Skip to main content
Log in

Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A nitric oxide (NO) gas sensor based on a thermoelectrically cooled, continuous-wave, distributed feedback quantum cascade laser operating at 5.45 μm (1835 cm-1) and off-axis integrated cavity output spectroscopy combined with a wavelength-modulation technique was developed to determine NO concentrations at the sub-ppbv levels that are essential for a number of applications, such as medical diagnostics, environmental monitoring, and industrial process control. The sensor employs a 50-cm-long high-finesse optical cavity that provides an effective path length of ∼700 m. A noise equivalent (SNR=1) minimum detection limit of 0.7 ppbv with a 1-s observation time was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson DD, Shorter JH, McManus JB, Zahniser MS (2002) Appl. Phys. B 75:343

    Article  ADS  Google Scholar 

  2. Steinfeld JH, Pandis SN (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York

    Google Scholar 

  3. Wysocki G, Kosterev AA, Tittel FK (2005) Appl. Phys. B 80:617

    Article  ADS  Google Scholar 

  4. Gupta H, Fan L-S (2003) Ind. Eng. Chem. Res. 42:2536

    Article  Google Scholar 

  5. Roller C, Namjou K, Jeffers JD, Potter W, McCann PJ, Grego J (2002) Opt. Lett. 27:107

    Article  ADS  Google Scholar 

  6. Roller C, Namjou K, Jeffers JD, Camp M, Mock A, McCann PJ, Grego J (2002) Appl. Opt. 41:6018

    Article  PubMed  ADS  Google Scholar 

  7. Amann A, Smith D (eds) (2005) Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. World Scientific, Singapore , pp 75–84

    Google Scholar 

  8. Smith AD, Taylor DR (2005) Curr. Opin. Allergy Clin. Immunol. 5:49

    Article  PubMed  Google Scholar 

  9. Blaser S, Yarekha DA, Hvozdara L, Bonetti Y, Miller A, Giovannini M, Faist J (2005) Appl. Phys. Lett. 86:041109-1

    Article  ADS  Google Scholar 

  10. S. Blaser, Y. Bonetti, L. Hvozdara, A. Mueller, Quantum-cascade lasers for TDLS. In 5th International Conference on Tunable Diode Laser Spectroscopy, Florence, Italy, 11–15 July 2005

  11. Ganser H, Urban W, Brown JM (2003) Mol. Phys. 101:545

    Article  ADS  Google Scholar 

  12. Ganser H, Horstjann M, Suschek CV, Hering P, Mürtz M (2004) Appl. Phys. B 78:513

    Article  ADS  Google Scholar 

  13. Weber WH, Remillard TJ, Chase RE, Richert JF, Capasso F, Gmachl C, Hutchinson AL, Sivco DL, Baillargeon JN, Cho AY (2002) Appl. Spectrosc. 56:706

    Article  ADS  Google Scholar 

  14. Paldus BA, Harb CC, Spence TG, Zare RN, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY (2000) Opt. Lett. 25:666

    Article  ADS  Google Scholar 

  15. Paldus BA, Kachanov AA, Spectroscopic techniques: cavity-enhanced methods. In Atomic, Molecular, and Optical Physics Handbook, Part C: Molecules, ed. by Drake GWF (Springer, Berlin 2005), Chap. 43, p. 621

    Google Scholar 

  16. Kosterev AA, Malinovsky AL, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY (2001) Appl. Opt. 40:5522

    Article  ADS  Google Scholar 

  17. O’Keefe A, Scherer JJ, Paul JB (1999) Chem. Phys. Lett. 307:343

    Article  Google Scholar 

  18. Paul JB, Larson L, Anderson JG (2001) Appl. Opt. 40:4904

    Article  ADS  Google Scholar 

  19. Menzel L, Kosterev AA, Curl RF, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon NJ, Hutchinson AL, Cho AY, Urban W (2001) Appl. Phys. B 72:859

    PubMed  ADS  Google Scholar 

  20. Bakhirkin YA, Kosterev AA, Roller C, Curl RF, Tittel FK (2004) Appl. Opt. 43:2257

    Article  PubMed  ADS  Google Scholar 

  21. Silva ML, Sonnenfroh DM, Rosen DI, Allen MG, O’Keefe A (2005) Appl. Phys. B 81:705

    Article  ADS  Google Scholar 

  22. Reid J, Labrie D (1981) Appl. Phys. B 26:203

    Article  ADS  Google Scholar 

  23. Bomse DS, Stanton AC, Silver JA (1992) Appl. Opt. 31:718

    Article  ADS  Google Scholar 

  24. Namjou K, Cai S, Whittaker EA, Faist J, Gmachl C, Capasso F, Sivco DL, Cho AY (1998) Opt. Lett. 23:219

    ADS  Google Scholar 

  25. Wilson EL, Miller JH (2001) Meas. Sci. Technol. 12:1701

    Article  ADS  Google Scholar 

  26. Kasyutich VL, Canosa-Mas CE, Pfrang C, Vaughan S, Wayne RP (2002) Appl. Phys. B 75:755

    Article  ADS  Google Scholar 

  27. Zybin A, Kuritsyn YA, Mironenko VR, Niemax K (2004) Appl. Phys. B 78:103

    Article  ADS  Google Scholar 

  28. Kosterev AA, Tittel FK, Köhler R, Gmachl C, Capasso F, Sivco DL, Cho AY, Wehe S, Allen MG (2002) Appl. Opt. 41:1169

    Article  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.K. Tittel.

Additional information

PACS

07.07.Df; 33.20.Ea; 42.62.Fi; 87.64.Je

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhirkin, Y., Kosterev, A., Curl, R. et al. Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy. Appl. Phys. B 82, 149–154 (2006). https://doi.org/10.1007/s00340-005-2058-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2058-0

Keywords

Navigation