Skip to main content
Log in

Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A recently developed distributed feedback quantum cascade laser (QCL) capable of thermoelectric-cooled (TEC) continuous-wave (cw) operation and emitting at ∼9 μm is used to perform laser chemical sensing by tunable infrared spectroscopy. A quasi-continuous-wave mode of operation relying on long current pulses (∼5 Hz, ∼50% duty cycle) is utilized rather than pure cw operation in order to extend the continuous frequency tuning range of the quantum cascade laser. Sulfur dioxide and ammonia were selected as convenient target molecules to evaluate the performance of the cw TEC QCL based sensor. Direct absorption spectroscopy and wavelength-modulation spectroscopy were performed to demonstrate chemical sensing applications with this novel type of quantum cascade laser. For ammonia detection, a 18-ppm noise-equivalent sensitivity (1 σ) was achieved for a 1-m absorption path length and a 25-ms data-acquisition time using direct absorption spectroscopy. The use of second-harmonic-detection wavelength-modulation spectroscopy instead of direct absorption increased the sensitivity by a factor of three, achieving a normalized noise-equivalent sensitivity of 82 ppb Hz-1/2 for a 1-m absorption path length, which corresponds to 2×10-7 cm-1 Hz-1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Kosterev, F.K. Tittel: IEEE J. Quantum Electron. QE-38, 582 (2002)

  2. D.M. Sonnenfroh, W.T. Rawlins, M.G. Allen, C.G. Gmachl, F. Capasso, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho: Appl. Opt. 40, 812 (2001)

    Google Scholar 

  3. D.D. Nelson, J.H. Shorter, J.B. McManus, M.S. Zahniser: Appl. Phys. B 75, 343 (2002)

    Article  Google Scholar 

  4. D. Weidmann, A.A. Kosterev, C. Roller, R.F. Curl, M.P. Fraser, F.K. Tittel: Appl. Opt. 43, 3329 (2004)

    Article  Google Scholar 

  5. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior: Science 295, 301 (2002)

    Article  MATH  Google Scholar 

  6. A. Evans, J.S. Yu, J. David, L. Doris, K. Mi, S. Slivken, M. Razeghi: Appl. Phys. Lett. 84, 314 (2004)

    Article  Google Scholar 

  7. T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, E. Gini: Appl. Phys. Lett. 83, 1929 (2003)

    Article  Google Scholar 

  8. S. Blaser, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, J. Faist: in CLEO 2004, San Francisco, CA, 16–21 May 2004, postdeadline paper CPDB6

  9. L.S. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino: J. Quantum Spectrosc. Radiat. Transfer 82, 5 (2003)

    Article  Google Scholar 

  10. J.H. Seinfeld, S.N. Pandis: Atmospheric Chemistry and Physics (Wiley, New York 1997) Chap. 2

  11. A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho: Appl. Opt. 39, 4425 (2000)

    Google Scholar 

  12. E. Normand, M. McCulloch, G. Duxbury, N. Langford: Opt. Lett. 28, 16 (2003)

    Google Scholar 

  13. T. Beyer, M. Braun, A. Lambrecht: J. Appl. Phys. 93, 3158 (2003)

    Article  Google Scholar 

  14. S.W. Sharpe, J.F. Kelly, J.S. Hartman, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.Y. Cho: Opt. Lett. 23, 1396 (1998)

    Google Scholar 

  15. D. Weidmann, L. Joly, V. Parpillon, D. Courtois, Y. Bonetti, T. Aellen, M. Beck, J. Faist, D. Hofstetter: Opt. Lett. 28, 704 (2003)

    Google Scholar 

  16. J.J. Olivero, R.L. Longbothum: J. Quantum Spectrosc. Radiat. Transfer 17, 233 (1977)

    Article  Google Scholar 

  17. A. Schmohl, A. Miklos, P. Hess: Appl. Opt. 40, 2571 (2001)

    Google Scholar 

  18. M.E. Webber, D.S. Baer, R.K. Hanson: Appl. Opt. 40, 2031 (2001)

    Google Scholar 

  19. R. Claps, F.V. Englich, D.P. Leleux, D. Richter, F.K. Tittel: Appl. Opt. 40, 4387 (2001)

    Google Scholar 

  20. A.A. Kosterev, R.F. Curl, F.K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho: Appl. Opt. 41, 573 (2002)

    Google Scholar 

  21. J.T.C. Liu, J.B. Jeffries, R.K. Hanson: Appl. Phys. B 78, 503 (2004)

    Article  Google Scholar 

  22. K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho: Opt. Lett. 23, 219 (1998)

    Google Scholar 

  23. J.A. Silver: Appl. Opt. 31, 6 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Weidmann.

Additional information

PACS

42.55.Px; 42.62.Fi; 07.88.+y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidmann, D., Tittel, F., Aellen, T. et al. Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser. Appl Phys B 79, 907–913 (2004). https://doi.org/10.1007/s00340-004-1634-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1634-z

Keywords

Navigation