Skip to main content
Log in

Photonic-doped epsilon-near-zero media for coherent perfect absorption

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Coherent perfect absorption increases light absorption to 100% via appropriate interference of waves and provides attractive opportunities for flexible control of light absorption. In this work, we demonstrate that the coherent perfect absorption can be realized using photonic doping of epsilon-near-zero media with both lossless and lossy defects. Based on photonic doping theory, the epsilon-near-zero medium with defects can be homogenized as an effective medium. We find that the lossless defects can tune the effective permeability to be zero, and the lossy defects can further tune the effective permeability to be a pure imaginary value to realize the coherent perfect absorption. Moreover, we show that the doping scheme enables many ways to control absorption, such as multiple channels and multiple doping defects, etc. Our work reveals a unique approach for advanced coherent perfect absorption with flexible control functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.G. Baranov, A. Krasnok, T. Shegai, A. Alù, Y. Chong, Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017)

    Article  ADS  Google Scholar 

  2. Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)

    Article  ADS  Google Scholar 

  3. S. Longhi, PT-symmetric laser absorber. Phys. Rev. A 82, 031801 (2010) R)

    Article  ADS  Google Scholar 

  4. Y.D. Chong, L. Ge, A.D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011)

    Article  ADS  Google Scholar 

  5. W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)

    Article  ADS  Google Scholar 

  6. H. Noh, Y. Chong, A.D. Stone, H. Cao, Perfect coupling of light to surface plasmons by coherent absorption. Phys. Rev. Lett. 108, 186805 (2012)

    Article  ADS  Google Scholar 

  7. J. Zhang, K.F. MacDonald, N.I. Zheludev, Controlling light-with-light without nonlinearity. Light Sci. Appl. 1, e18 (2012)

    Article  ADS  Google Scholar 

  8. M. Pu, Q. Feng, C. Hu, X. Luo, Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics 7, 733–738 (2012)

    Article  Google Scholar 

  9. J. Luo, S. Li, B. Hou, Y. Lai, Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields. Phys. Rev. B 90, 165128 (2014)

    Article  ADS  Google Scholar 

  10. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301 (2015) R)

    Article  ADS  Google Scholar 

  11. C. Yan, M. Pu, J. Luo, Y. Huang, X. Li, X. Ma, X. Luo, Coherent perfect absorption of electromagnetic wave in subwavelength structures. Opt. Laser Technol. 101, 499–506 (2018)

    Article  ADS  Google Scholar 

  12. M.B. Pu, Q. Feng, M. Wang, C.G. Hu, C. Huang, X.L. Ma, Z.Y. Zhao, C.T. Wang, X.G. Luo, Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)

    Article  ADS  Google Scholar 

  13. S.M. Rao, J.J.F. Heitz, T. Roger, N. Westerberg, D. Faccio, Coherent control of light interaction with graphene. Opt. Lett. 39, 5345 (2014)

    Article  ADS  Google Scholar 

  14. S. Huang, Z. Xie, W. Chen, J. Lei, F. Wang, K. Liu, L. Li, Metasurface with multi-sized structure for multi-band coherent perfect absorption. Opt. Express 26, 7066 (2018)

    Article  ADS  Google Scholar 

  15. W. Lv, J. Bing, Y. Deng, D. Duan, Z. Zhu, Y. Li, C. Guan, J. Shi, Polarization-controlled multifrequency coherent perfect absorption in stereometamaterials. Opt. Express 26, 17236 (2018)

    Article  ADS  Google Scholar 

  16. K. Nireekshan, Reddy, S. Dutta Gupta, Light-controlled perfect absorption of light. Opt. Lett. 38, 5252–5255 (2013)

    Article  ADS  Google Scholar 

  17. P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C.T. Chan, Y. Wu, Y. Lai, Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss. Phys. Rev. A 94, 063841 (2016)

    Article  ADS  Google Scholar 

  18. J. Luo, B. Liu, Z.H. Hang, Y. Lai, Coherent perfect absorption via photonic doping of zero-index media, Laser Photonics Rev. 12, 1800001 (2018)

    Article  ADS  Google Scholar 

  19. X. Huang, Y. Lai, Z.H. Hang, H. Zheng, C.T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011)

    Article  ADS  Google Scholar 

  20. P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, J. Valentine, Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics 7, 791–795 (2013)

    Article  ADS  Google Scholar 

  21. Y. Li, S. Kita, P. Muñoz, O. Reshef, D.I. Vulis, M. Yin, M. Lončar, E. Mazur, On-chip zero-index metamaterials. Nat. Photonics 9, 738–742 (2015)

    Article  ADS  Google Scholar 

  22. H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z.H. Hang, L. Zhou, Y. Lai, A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci. Appl. 7, 50 (2018)

    Article  ADS  Google Scholar 

  23. J. Luo, Z.H. Hang, C.T. Chan, Y. Lai, Unusual percolation threshold of electromagnetic waves in double-zero medium embedded with random inclusions. Laser Photonics Rev. 9, 523–529 (2015)

    Article  ADS  Google Scholar 

  24. J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z.H. Hang, C.T. Chan, Y. Lai, Ultratransparent media and transformation optics with shifted spatial dispersions. Phys. Rev. Lett. 117, 223901 (2016)

    Article  ADS  Google Scholar 

  25. I. Liberal, N. Engheta, Near-zero refractive index photonics. Nat. Photonics 11, 149–158 (2017)

    Article  ADS  Google Scholar 

  26. M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using €-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006)

    Article  ADS  Google Scholar 

  27. J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, Y. Lai, Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials. Appl. Phys. Lett. 100, 221903 (2012)

    Article  ADS  Google Scholar 

  28. Q. Cheng, W.X. Jiang, T.J. Cui, Spatial power combination for omnidirectional radiation via anisotropic metamaterials. Phys. Rev. Lett. 108, 213903 (2012)

    Article  ADS  Google Scholar 

  29. J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, C.T. Chan, Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index. Phys. Rev. Lett. 112, 073903 (2014)

    Article  ADS  Google Scholar 

  30. T. Wang, J. Luo, L. Gao, P. Xu, Y. Lai, Equivalent perfect magnetic conductor based on epsilon-near-zero media. Appl. Phys. Lett. 104, 211904 (2014)

    Article  ADS  Google Scholar 

  31. J. Luo, P. Xu, T. Sun, L. Gao, Tunable beam splitting and negative refraction in heterostructure with metamaterial. Appl. Phys. A 104, 1137–1142 (2011)

    Article  ADS  Google Scholar 

  32. D.C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N.A. Kuhta, W.D. Goodhue, V.A. Podolskiy, D. Wasserman, Funneling light through a subwavelength aperture with epsilon-near-zero materials. Phys. Rev. Lett. 107, 133901 (2011)

    Article  ADS  Google Scholar 

  33. Y.C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.J. Greffet, S. Vassant, F. Marquier, M. Sinclair, I. Brener, Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. Nano Lett. 13, 5391–5396 (2013)

    Article  ADS  Google Scholar 

  34. S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J.L. Pelouard, J.J. Greffet, Epsilon-near-zero mode for active optoelectronic devices. Phys. Rev. Lett. 109, 237401 (2012)

    Article  ADS  Google Scholar 

  35. H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, H.A. Atwater, Nanoscale conducting oxide plasMOStor. Nano Lett. 14, 6463–6468 (2014)

    Article  ADS  Google Scholar 

  36. M.Z. Alam, I. De Leon, R.W. Boyd, Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016)

    Article  ADS  Google Scholar 

  37. A.P. Vasudev, J. Kang, J. Park, X. Liu, M.L. Brongersma, Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Opt. Express 21, 26387 (2013)

    Article  ADS  Google Scholar 

  38. J. Kim, A. Dutta, G.V. Naik, A.J. Giles, F.J. Bezares, C.T. Ellis, J.G. Tischler, A.M. Mahmoud, H. Caglayan, O.J. Glembocki, Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 3, 339–346 (2016)

    Article  Google Scholar 

  39. S. Vezzoli, V. Bruno, C. Devault, T. Roger, V.M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, D. Faccio, Optical time reversal from time-dependent epsilon-near-zero media. Phys. Rev. Lett. 120, 043902 (2018)

    Article  ADS  Google Scholar 

  40. I. Liberal, A.M. Mahmoud, Y. Li, B. Edwards, N. Engheta, Photonic doping of epsilon-near-zero media. Science 355, 1058–1062 (2017)

    Article  ADS  Google Scholar 

  41. Y. Wu, J. Li, Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Appl. Phys. Lett. 102, 183105 (2013)

    Article  ADS  Google Scholar 

  42. J. Luo, J. Li, Y. Lai, Electromagnetic impurity-immunity induced by parity-time symmetry. Phys. Rev. X 8, 031035 (2018)

    Google Scholar 

  43. M.Z. Alam, S.A. Schulz, J. Upham, I. De Leon, R.W. Boyd, Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics 12, 79–83 (2018)

    Article  ADS  Google Scholar 

  44. X. Niu, X. Hu, S. Chu, Q. Gong, Epsilon-near-zero photonics: a new platform for integrated devices, Adv. Opt. Mater., 1701292 (2018)

  45. P. Bai, Y. Wu, Y. Lai, Multi-channel coherent perfect absorbers. EPL 114, 28003 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shenzhen Science and Technology Plan (Grant No: JSGG20160819150017627, JSGG20160819150000459). Wenjie Jie, Dunjian Wang, and Sucheng Li contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfang Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, W., Wang, D., Li, S. et al. Photonic-doped epsilon-near-zero media for coherent perfect absorption. Appl. Phys. A 125, 129 (2019). https://doi.org/10.1007/s00339-019-2385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2385-3

Navigation