Skip to main content
Log in

Femtosecond laser melting of silver nanoparticles: comparison of model simulations and experimental results

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrafast laser-induced melting of silver nanoparticles (NPs) using a femtosecond laser pulse is investigated both theoretically and experimentally. The sintered Ag structure fabricated from printed Ag NP ink using femtosecond laser (1064 nm, 300 fs) irradiation is experimentally studied. A two-temperature model with dynamic optical properties and particle size effects on the melting temperature of Ag NPs is considered. The rapid phase change model is incorporated to simulate the Ag NPs’ ultrafast laser-induced melting process, and a multi-shot melting threshold fluence predicted from the simulated single-shot melting threshold is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Hedges, A.B. Marin, 3D Aerosol Jet Printing–Adding Electronics Functionality to RP/RM. In: Presented at the DDMC, (Berlin, 2012)

  2. S. Wunscher, R. Abbel, J. Perelaer, U.S. Schubert, Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J. Mater. Chem. C 2, 10232–10261 (2014)

    Article  Google Scholar 

  3. Y.H. Yoon, S.-M. Yi, J.-R. Yim, J.-H. Lee, G. Rozgonyi, Y.-C. Joo, Microstructure and electrical properties of high power laser thermal annealing on inkjet-printed Ag films. Microelectron. Eng. 87, 2230–2233 (2010)

    Article  Google Scholar 

  4. A. Chiolerio, G. Maccioni, P. Martino, M. Cotto, P. Pandolfi, P. Rivolo et al., Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microelectron. Eng. 88, 2481–2483 (2011)

    Article  Google Scholar 

  5. I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336, 157–162 (2015)

    Article  ADS  Google Scholar 

  6. Y. Son, J. Yeo, H. Moon, T.W. Lim, S. Hong, K.H. Nam et al., Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv. Mater. 23, 3176–3181 (2011)

    Article  Google Scholar 

  7. H. Huang, M. Sivayoganathan, W.W. Duley, Y. Zhou, Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses. Appl. Surf. Sci. 331, 392–398 (2015)

    Article  ADS  Google Scholar 

  8. Y. Zhang, J.K. Chen, Ultrafast melting and resolidification of gold particle irradiated by pico- to femtosecond lasers. J. Appl. Phys. 104, 054910 (2008)

    Article  ADS  Google Scholar 

  9. C. Cheng, J. Chen, Femtosecond laser sintering of copper nanoparticles. Appl. Phys. A 122, 289 (2016)

    Article  ADS  Google Scholar 

  10. L. Li, L. Zhou, Y. Shan, M. Yang, Analysis of rapid melting and resolidification in femtosecond laser interaction with nanoparticle. Numer. Heat Transf. Part A Appl. 69, 859–873 (2016)

    Article  ADS  Google Scholar 

  11. L. Liu, P. Peng, A. Hu, G. Zou, W. Duley, Y.N. Zhou, Highly localized heat generation by femtosecond laser induced plasmon excitation in Ag nanowires. Appl. Phys. Lett. 102, 073107 (2013)

    Article  ADS  Google Scholar 

  12. H. Sehmi, W. Langbein, E. Muljarov, Optimizing the Drude–Lorentz model for material permittivity: method, program, and examples for gold, silver, and copper. Phys. Rev. B 95, 115444 (2017)

    Article  ADS  Google Scholar 

  13. J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations. Appl. Phys. Mater. Sci. Process. 103, 447–453 (2011)

    Article  ADS  Google Scholar 

  14. H.U. Yang, J. D’Archangel, M.L. Sundheimer, E. Tucker, G.D. Boreman, M.B. Raschke, Optical dielectric function of silver. Phys. Rev. B 91, 235137 (2015)

    Article  ADS  Google Scholar 

  15. A. Vial, T. Laroche, Comparison of gold and silver dispersion laws suitable for FDTD simulations. Appl. Phys. B Lasers Opt. 93, 139–143 (2008)

    Article  ADS  Google Scholar 

  16. S.I. Anisimov, B. Rethfeld, Theory of ultrashort laser pulse interaction with a metal. Proc. SPIE 3093, 192–203 (1997)

    Article  ADS  Google Scholar 

  17. K. Vestentoft, P. Balling, Formation of an extended nanostructured metal surface by ultra-short laser pulses: single-pulse ablation in the high-fluence limit. Appl. Phys. A Mater. Sci. Process. 84, 207–213 (2006)

    Article  ADS  Google Scholar 

  18. Z. Lin, L.V. Zhigilei, V. Celli, Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  19. Y. Ren, J.K. Chen, Y. Zhang, Modeling of ultrafast phase changes in metal films irradiated by an ultrashort laser pulse using a semiclassical two-temperature model. Int. J. Heat Mass Transf. 55, 1260–1627 (2012)

    Article  Google Scholar 

  20. Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Huang, Ultrashort laser pulse energy deposition in metal films with phase changes. Appl. Phys. Lett. 98, 191105 (2011)

    Article  ADS  Google Scholar 

  21. W.-L. Chan, R.S. Averback, D.G. Cahill, A. Lagoutchev, Dynamics of femtosecond laser-induced melting of silver. Phys. Rev. B 78, 214107 (2008)

    Article  ADS  Google Scholar 

  22. P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, Y.N. Zhou, Joining of silver nanomaterials at low temperatures: processes, properties, and applications. ACS Appl. Mater. Interfaces 7, 12597–12618 (2015)

  23. Y. Zhang, J.K. Chen, An interfacial tracking method for ultrashort pulse laser melting and resolidification of a thin metal film. J. Heat Transf. 130, 062401–062401 (2008)

    Article  Google Scholar 

  24. Y. Jee, M.F. Becker, R.M. Walser, Laser-induced damage on single-crystal metal surfaces. JOSA B 5, 648–659 (1988)

    Article  ADS  Google Scholar 

  25. M. Saghebfar, M. Tehrani, S. Darbani, A. Majd, Femtosecond pulse laser ablation of chromium: experimental results and two-temperature model simulations. Appl. Phys. A 123, 28 (2017)

    Article  ADS  Google Scholar 

  26. L. Gallais, E. Bergeret, B. Wang, M. Guérin, E. Bènevent, Ultrafast laser ablation of metal films on flexible substrates. Appl. Phys. A 115, 177–188 (2014)

    Article  ADS  Google Scholar 

  27. D. Bruneel, G. Matras, R. Le Harzic, N. Huot, K. Koenig, E. Audouard, Micromachining of metals with ultra-short Ti-Sapphire lasers: prediction and optimization of the processing time. Opt. Lasers Eng. 48, 268–271 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the MOST 105-2221-E-009-063 for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Wei Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CW., Chang, CL., Chen, JK. et al. Femtosecond laser melting of silver nanoparticles: comparison of model simulations and experimental results. Appl. Phys. A 124, 371 (2018). https://doi.org/10.1007/s00339-018-1792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1792-1

Navigation