Skip to main content
Log in

Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study proposed a fast, simple, eco-friendly method for obtaining highly sensitive and uniform surface-enhanced Raman scattering (SERS) of silver (Ag) nanotextured substrates decorated with silver nanoparticles in open air. By splitting conventional femtosecond pulses (subpulse delay Δt = 0 ps) into pulse trains (subpulse delay Δt = 3 ps), the mean diameter of Ag nanoparticles was reduced by almost half and the amount of Ag nanoparticles with a diameter ranging from 20 to 60 nm was increased by more than 11 times. The substrate fabricated by femtosecond pulse trains has four main merits as follows: (1) High sensitivity: the maximum SERS enhancement factor is 1.26 × 109; (2) High efficiency: the fabrication rate can be up to 1600 μm2/s, which is 20–40 times faster than femtosecond photochemical reduction; (3) Good reproducibility: the relative standard deviation of the Raman signal intensity is 10.7%, which is one-third of that for conventional femtosecond laser; (4) Eco-friendly fabrication: neither chemical reagents nor vacuum conditions are needed during the fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Yuen, Z. Wei, Z. Huang, Biosens. Bioelectron 26, 580–584 (2010)

    Article  Google Scholar 

  2. A.M. Giovannozzi, F. Rolle, M. Sega, M.C. Abete, D. Marchis, A.M. Rossi, Food Chem. 159, 250–256 (2014)

    Article  Google Scholar 

  3. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163–166 (1974)

    Article  ADS  Google Scholar 

  4. C.L. Haynes, A.D. McFarland, R.P.V. Duyne, Anal. Chem. 77, 338 A–346 A (2005)

    Article  Google Scholar 

  5. K. Kneipp, H. Kneipp, J. Kneipp, Acc. Chem. Res. 39, 443–450 (2006)

    Article  Google Scholar 

  6. Y. Yang, Z.Y. Li, K. Yamaguchi, M. Tanemura, Z. Huang, D. Jiang, Y. Chen, F. Zhou, M. Nogami, Nanoscale 4, 2663–2669 (2012)

    Article  ADS  Google Scholar 

  7. C. Xing, C.H. Cui, G. Zheng, J.H. Liu, X.J. Huang, S.H. Yu, Small 7, 858–863 (2011)

    Article  Google Scholar 

  8. C.C. Yu, S.Y. Chou, Y.C. Tseng, S.C. Tseng, Y.T. Yen, H.L. Chen, Nanoscale 7, 1667–1677 (2015)

    Article  ADS  Google Scholar 

  9. C. D’Andrea, F. Neri, P.M. Ossi, N. Santo, S. Trusso, Nanotechnology 20, 10830–10832 (2009)

    Google Scholar 

  10. Y. Fang, N.H. Seong, D.D. Dlott, Science 321, 388–392 (2008)

    Article  ADS  Google Scholar 

  11. A.Y. Vorobyev, C. Guo, Appl. Surf. Sci. 257, 7291–7294 (2011)

    Article  ADS  Google Scholar 

  12. W. Wang, G. Jiang, X. Mei, K. Wang, J. Shao, C. Yang, Appl. Surf. Sci. 256, 3612–3617 (2010)

    Article  ADS  Google Scholar 

  13. B. Liu, W. Wang, G. Jiang, X. Mei, Z. Wang, K. Wang, J. Cui, Appl. Surf. Sci. 364, 528–538 (2015)

    Article  ADS  Google Scholar 

  14. C.H. Lin, L. Jiang, Y.H. Chai, H. Xiao, S.J. Chen, H.L. Tsai, Opt. Express 17, 21581–21589 (2009)

    Article  ADS  Google Scholar 

  15. N. Zhang, X. Li, L. Jiang, X. Shi, C. Li, Y. Lu, Opt. Lett. 38, 3558–3561 (2013)

    Article  ADS  Google Scholar 

  16. L. Jiang, D. Ying, X. Li, Y. Lu, Opt. Lett. 37, 3648–3650 (2012)

    Article  ADS  Google Scholar 

  17. S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, L. Wang, ACS Appl. Mater. Interfaces 6, 18735–18741 (2013)

    Article  Google Scholar 

  18. F.A. Harraz, A.A. Ismail, H. Bouzid, S.A. Al-Sayari, A. Al-Hajry, M.S. Al-Assiri, Appl. Surf. Sci. 331, 241–247 (2015)

    Article  ADS  Google Scholar 

  19. Z. Dai, F. Mei, X. Xiao, L. Liao, L. Fu, J. Wang, W. Wu, S. Guo, X. Zhao, W. Li, Appl. Phys. Lett. 105, 033515-033515-033515 (2014)

    ADS  Google Scholar 

  20. S. Hamad, G.K. Podagatlapalli, M.A. Mohiddon, V.R. Soma, Appl. Phys. Lett. 104, 263104-263104-263105 (2014)

    ADS  Google Scholar 

  21. D.K. Lim, K.S. Jeon, J.H. Hwang, H. Kim, S. Kwon, Y.D. Suh, J.M. Nam, Nat. Nanotechnol. 6, 452–460 (2011)

    Article  ADS  Google Scholar 

  22. Y. Zheng, A.H. Soeriyadi, L. Rosa, S.H. Ng, U. Bach, J.J. Gooding, Nat. Commun. 6 (2015)

  23. Q.W. Yong, M. Sheng, Q.Y. Qian, J.L. Xin, Appl. Surf. Sci. 258, 5881–5885 (2012)

    Article  ADS  Google Scholar 

  24. K.G. Stamplecoskie, J.C. Scaiano, V.S. Tiwari, H. Anis, J. Phys. Chem. C 115, 1403–1409 (2011)

    Article  Google Scholar 

  25. X. Li, L. Jiang, H.L. Tsai, J. Appl. Phys. 106, 064906-064906-064906 (2009)

    ADS  Google Scholar 

  26. L. Jiang, H.L. Tsai, Int. J. Heat Mass Tran. 50, 3461–3470 (2007)

    Article  Google Scholar 

  27. X. Li, L. Jiang, Appl. Phys. A 109, 367–376 (2012)

    Article  ADS  Google Scholar 

  28. K. Chen, L. Marco, V.D. Kim-Chi, Y. Fei, M.B. Wabuyele, V.D. Tuan, J. Raman Spectrosc. 37, 520–527 (2006)

    Article  ADS  Google Scholar 

  29. H. He, H. Li, W. Xia, X. Shen, M. Zhou, J. Han, X. Zeng, W. Cai, J. Mater. Chem. C 3, 1724–1731 (2015)

    Article  Google Scholar 

  30. F. Liao, L. Cheng, J. Li, M. Shao, Z. Wang, S.T. Lee, J. Mater. Chem. C 1, 1628–1632 (2012)

    Article  Google Scholar 

  31. M.L. Tseng, Y.W. Huang, M.K. Hsiao, H.W. Huang, H.M. Chen, Y.L. Chen, C.H. Chu, N.N. Chu, Y.J. He, C.M. Chang, Acs Nano 6, 5190–5197 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the 863 of Ministry of Science and Technology of China (Grant No. 2015AA042702), the National Natural Science Foundation of China (NSFC) (Grant No. 91323301) and Program for New Century Excellent Talents in University (Grant No. NCET-13-0039). We thank Prof. Zheyu Fang and Dr. Shuai Zu of Peking University for the dark-field spectra experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 726 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, X., Jiang, L. et al. Fast and eco-friendly fabrication of uniform Ag substrates for highly sensitive surface-enhanced Raman scattering. Appl. Phys. A 123, 322 (2017). https://doi.org/10.1007/s00339-017-0937-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0937-y

Keywords

Navigation