Skip to main content
Log in

Ultrafast imaging the light-speed propagation of a focused femtosecond laser pulse in air and its ionized electron dynamics and plasma-induced pulse reshaping

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The light-speed propagation of a focused femtosecond (fs) laser pulse in air was recorded by a pump–probe shadowgraph imaging technique with femtosecond time resolution. The ultrafast dynamics of the laser-ionized electrons were studied, which revealed a strong reshaping of the laser field due to laser–air nonlinear interaction. The influence of laser fluence and focusing conditions on the pulse reshaping was studied, and it was found that: (1) double foci are formed due to the refocusing effect when the laser fluence is higher than 500 J/cm2 and the focusing numeric aperture (NA) is higher than 0.30; and (2) a higher NA focusing lens can better inhibit the prefocusing effect and nonlinear distortion in the Gaussian beam waist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Jiang, P. Liu, X. Yan, N. Leng, C. Xu, H. Xiao, Y. Lu, High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains. Opt. Lett. 37, 2781–2783 (2012)

    Article  ADS  Google Scholar 

  2. K.H. Kim, J.G. Kim, S. Nozawa, T. Sato, K.Y. Oang, T.W. Kim, H. Ki, J. Jo, S. Park, C. Song, T. Sato, K. Ogawa, T. Togashi, K. Tono, M. Yabashi, T. Ishikawa, J. Kim, R. Ryoo, J. Kim, H. Ihee, S. Adachi, Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518, 385–389 (2015)

    Article  ADS  Google Scholar 

  3. S. Bourquin, A.D. Aguirre, I. Hartl, P. Hsiung, T.H. Ko, J.G. Fujimoto, T.A. Birks, W.J. Wadsworth, U. Bünting, D. Kopf, Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd: glass laser and nonlinear fiber. Opt. Express 11, 3290–3297 (2003)

    Article  ADS  Google Scholar 

  4. R. Shah, S. Shah, S.J. Sengupta, Results of small incision lenticule extraction: all-in-one femtosecond laser refractive surgery. J. Cataract Refract. Surg. 37, 127–137 (2011)

    Article  Google Scholar 

  5. J. Maysonnave, S. Huppert, F. Wang, S. Maero, C. Berger, W. de Heer, T.B. Norris, L.A. De Vaulchier, S. Dhillon, J. Tignon, R. Ferreira, J. Mangeney, Terahertz generation by dynamical photon drag effect in graphene excited by femtosecond optical pulses. Nano Lett. 14, 5797–5802 (2014)

    Article  ADS  Google Scholar 

  6. O. Wada, Femtosecond all-optical devices for ultrafast communication and signal processing. New J. Phys. 6, 183 (2004)

    Article  ADS  Google Scholar 

  7. S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges. Can. J. Phys. 83, 863–905 (2005)

    Article  ADS  Google Scholar 

  8. Y. Li, T. Xi, Z. Hao, Z. Zhang, X. Peng, K. Li, Z. Jin, Z. Zheng, Q. Yu, X. Lu, J. Zhang, Oval-like hollow intensity distribution of tightly focused femtosecond laser pulses in air. Opt. Express 15, 17973–17979 (2007)

    Article  ADS  Google Scholar 

  9. Z. Xu, X. Zhu, Y. Yu, N. Zhang, J. Zhao, Super-luminescent jet light generated by femtosecond laser pulses. Sci. Rep. 4, 3892 (2014)

    ADS  Google Scholar 

  10. T. Liu, Z. Hao, X. Gao, Z. Liu, J. Lin, Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation. Chin. Phys. B 23, 085203 (2014)

    Article  ADS  Google Scholar 

  11. S. Tzortzakis, B. Prade, M. Franco, M. Franco, A. Mysyrowicz, Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air. Opt. Commun. 181, 123–127 (2000)

    Article  ADS  Google Scholar 

  12. X. Liu, X. Lu, X. Liu, T. Xi, F. Liu, J. Ma, J. Zhang, Tightly focused femtosecond laser pulse in air: from filamentation to breakdown. Opt. Express 18, 26007–26017 (2010)

    Article  ADS  Google Scholar 

  13. M. Centurion, Y. Pu, D. Psaltis, Holographic capture of femtosecond pulse propagation. J. Appl. Phys. 100, 063104 (2006)

    Article  ADS  Google Scholar 

  14. R.J. Nordstrom, Study of laser-induced plasma emission spectra of N2, O2, and ambient air in the region 350 nm to 950 nm. Appl. Spectrosc. 49, 1490–1499 (1995)

    Article  ADS  Google Scholar 

  15. X. Zhu, R. Fu, Emission spectra of micro plasma generated by fs laser pulses. Proc. SPIE 4914, 58–67 (2002)

    Article  ADS  Google Scholar 

  16. A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team (2014). NIST Atomic Spectra Database (ver. 5.2), [Online]. http://physics.nist.gov/asd [2015, August 5]. National Institute of Standards and Technology, Gaithersburg, MD

  17. L. Jiang, H.L. Tsai, Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transfer 127, 1167–1173 (2005)

    Article  Google Scholar 

  18. I. Apitz, A. vogel, Material ejection in nanosecond Er: YAG laser ablation of water, liver and skin. Appl. Phys. A 81, 329–338 (2005)

    Article  ADS  Google Scholar 

  19. X. Zeng, X.L. Mao, R. Greif, R.E. Russo, Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl. Phys. A 80, 237–241 (2005)

    Article  ADS  Google Scholar 

  20. N. Zhang, X. Zhu, J. Yang, X. Wang, M. Wang, Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum. Phys. Rev. Lett. 99, 2–5 (2007)

    Google Scholar 

  21. R.G. Brewer, C.H. Lee, Self-trapping with picosecond light pulses. Phys. Rev. Lett. 21, 267 (1968)

    Article  ADS  Google Scholar 

  22. M.A. Duguay, J.W. Hansen, An ultrafast light gate. Appl. Phys. Lett. 15, 192 (1969)

    Article  ADS  Google Scholar 

  23. E.T.J. Nibbering, G. Grillon, M.A. Franco, B.S. Prade, A. Mysyrowicz, Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. J. Opt. Soc. Am. B 14, 650 (1997)

    Article  ADS  Google Scholar 

  24. V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Measurement of high order Kerr refractive index of major air components. Opt. Express 17, 13429 (2009)

    Article  ADS  Google Scholar 

  25. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, Q. Gong, Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica. Opt. Lett. 30, 320–322 (2005)

    Article  ADS  Google Scholar 

  26. X. Mao, S.S. Mao, R.E. Russo, Imaging femtosecond laser-induced electronic excitation in glass. Appl. Phys. Lett. 82, 697 (2003)

    Article  ADS  Google Scholar 

  27. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)

    Article  ADS  Google Scholar 

  28. Z. Wu, H. Jiang, L. Luo, H. Guo, H. Yang, Q. Gong, Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica. Opt. Lett. 27, 448–450 (2002)

    Article  ADS  Google Scholar 

  29. W. Liu, S.L. Chin, O. Kosareva, I.S. Golubtsov, V.P. Kandidov, Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol). Opt. Commun. 225, 193–209 (2003)

    Article  ADS  Google Scholar 

  30. Q. Luo, W. Liu, S.L. Chin, Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B 76, 337 (2003)

    Article  ADS  Google Scholar 

  31. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S.L. Chin, A. Baltuška, Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 86, 033831 (2012)

    Article  ADS  Google Scholar 

  32. A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, High-Gain Backward Lasing in Air. Science 331, 442 (2011)

    Article  ADS  Google Scholar 

  33. P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, M. Scully, Remotely induced atmospheric lasing. Appl. Phys. Lett. 98, 211102 (2011)

    Article  ADS  Google Scholar 

  34. M.N. Shneider, A. Baltuška, A.M. Zheltikov, Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization. J. Appl. Phys. 110, 083112 (2011)

    Article  ADS  Google Scholar 

  35. J. Ni, W. Chu, C. Jing, H. Zhang, B. Zeng, J. Yao, G. Li, H. Xie, C. Zhang, H. Xu, S.L. Chin, Y. Cheng, Z. Xu, Identification of the physical mechanism of generation of coherent N2 + emissions in air by femtosecond laser excitation. Opt. Express 21, 8746 (2013)

    Article  ADS  Google Scholar 

  36. Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses. Opt. Express 21, 22791 (2013)

    Article  ADS  Google Scholar 

  37. G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P. Ding, A. Houard, A. Mysyrowicz, Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser. Opt. Lett. 39, 1725 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (NSFC) (Grants 91323301 and 51375051), National Basic Research Program of China (973 Program) (Grant 2011CB013000), and Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 708018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Jiang, L., Cao, Q. et al. Ultrafast imaging the light-speed propagation of a focused femtosecond laser pulse in air and its ionized electron dynamics and plasma-induced pulse reshaping. Appl. Phys. A 122, 205 (2016). https://doi.org/10.1007/s00339-016-9773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9773-8

Keywords

Navigation