Skip to main content
Log in

Selective and directed growth of silicon nanowires by tip-enhanced local electric field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a method to trigger highly selective and directed growth of individual silicon nanowires based on an electrically biased atomic force microscope (AFM) tip. The biased tip affects the nanowire growth behavior right from the initial stage. In particular, the locally intensified electric field at the AFM tip apex assists the dissociation of the precursor gas molecules and exerts augmented electrostatic force on the catalyst/NW assembly. Therefore, the electrically biased tip can be a candidate tool for the direct synthesis/integration of semiconductor nanomaterials on temperature-sensitive substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Cui, Z.H. Zhong, D.L. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003)

    Article  ADS  Google Scholar 

  2. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Mater. Today 9, 18 (2006)

    Article  Google Scholar 

  3. G.F. Zheng, W. Lu, S. Jin, C.M. Lieber, Adv. Mater. 16(21), 1890 (2004)

    Article  Google Scholar 

  4. Y. Ahn, J. Dunning, J. Park, Nano Lett. 5(7), 1367 (2005)

    Article  ADS  Google Scholar 

  5. R. Yan, D. Gargas, P. Yang, Nat. Photonics 3(10), 569 (2009)

    Article  ADS  Google Scholar 

  6. P.J. Pauzauskie, P. Yang, Mater. Today 9(10), 36 (2006)

    Article  Google Scholar 

  7. X.L. Feng, R. He, P. Yang, M.L. Roukes, Nano Lett. 7(7), 1953 (2007)

    Article  ADS  Google Scholar 

  8. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  ADS  Google Scholar 

  9. J. Hahm, C.M. Lieber, Nano Lett. 4(1), 51 (2004)

    Article  ADS  Google Scholar 

  10. P.J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P.D. Yang, J. Liphardt, Nat. Mater. 5, 97 (2006)

    Article  ADS  Google Scholar 

  11. A. Jamshidi, P.J. Pauzauskie, P.J. Schuck, A.T. Ohta, P.-Y. Chiou, J. Chou, P. Yang, M.C. Wu, Nat. Photonics 2, 85 (2008)

    Article  ADS  Google Scholar 

  12. D.J. Hwang, S.G. Ryu, C.P. Grigoropoulos, Nanotechnology 22, 803106 (2011)

    Google Scholar 

  13. D.J. Hwang, S.G. Ryu, E. Kim, C.P. Grigoropoulos, C. Carraro, Appl. Phys. Lett. 99, 123109 (2011)

    Article  ADS  Google Scholar 

  14. S.-G. Ryu, E. Kim, J.-H. Yoo, D.J. Hwang, B. Xiang, O.D. Dubon, A.M. Minor, C.P. Grigoropoulos, ACS Nano 7(3), 2090 (2013)

    Article  Google Scholar 

  15. V.K. Pustovalov, Chem. Phys. 308(1–2), 103 (2005)

    Article  ADS  Google Scholar 

  16. P. Keblinski, D.G. Cahill, A. Bodapati, C.R. Sullivan, T.A. Taton, J. Appl. Phys. 100(5), 054305 (2006)

    Article  ADS  Google Scholar 

  17. L. Cao, D.N. Barsic, A.R. Guichard, M.L. Brongersma, Nano Lett. 7(11), 3523 (2007)

    Article  ADS  Google Scholar 

  18. S.-G. Ryu, D.J. Hwang, E. Kim, C.P. Grigoropoulos, Appl. Phys. A 116, 51 (2014)

    Article  ADS  Google Scholar 

  19. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, J. Vac. Sci. Technol. B 15(3), 554 (1997)

    Article  Google Scholar 

  20. N. Ozaki, Y. Ohno, S. Takeda, Appl. Phys. Lett. 73(25), 3700 (1998)

    Article  ADS  Google Scholar 

  21. J. Kikkawa, Y. Ohno, S. Takeda, Appl. Phys. Lett. 86(12), 123109 (2005)

    Article  ADS  Google Scholar 

  22. O. Englander, D. Christensen, J. Kim, L.W. Lin, S.J.S. Morris, Nano Lett. 5(4), 705 (2005)

    Article  ADS  Google Scholar 

  23. F. Paschen, Anal. Phys. 37, 69 (1889)

    Article  Google Scholar 

  24. E. Hourdakis, B.J. Simonds, N.M. Zimmerman, Rev. Sci. Instrum. 77, 034702 (2006)

    Article  ADS  Google Scholar 

  25. A. Gallagher, J. Appl. Phys. 63(7), 2406 (1988)

    Article  ADS  Google Scholar 

  26. R. Robertson, D. Hils, H. Chatham, A. Gallagher, Appl. Phys. Lett. 43(6), 544 (1983)

    Article  ADS  Google Scholar 

  27. S. Hofmann, C. Ducati, R.J. Neill, S. Piscanec, A.C. Ferrari, J. Geng, R.E. Dunin-Borkowski, J. Robertson, J. Appl. Phys. 94(9), 6005 (2003)

    Article  ADS  Google Scholar 

  28. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Appl. Phys. Lett. 83(1), 135 (2003)

    Article  ADS  Google Scholar 

  29. P. Aella, S. Ingole, W.T. Petuskey, S.T. Picraux, Adv. Mater. 19(18), 2603 (2007)

    Article  Google Scholar 

  30. S. Nunomura, M. Kondo, H. Akatsuka, Plasma Sources Sci. Technol. 15(4), 783 (2006)

    Article  ADS  Google Scholar 

  31. A. Matsuda, K. Nomoto, Y. Takeuchi, A. Suzuki, A. Yuuki, J. Perrin, Surf. Sci. 227(1–2), 50 (1990)

    Article  ADS  Google Scholar 

  32. J. Perrin, M. Shiratani, P. Kae-Nune, H. Videlot, J. Jolly, J. Guillon, J. Vac. Sci. Technol. A 16(1), 278 (1998)

    Article  ADS  Google Scholar 

  33. J. Perrin, T. Broekhuizen, Appl. Phys. Lett. 50(8), 433 (1987)

    Article  ADS  Google Scholar 

  34. J.M. Jasinski, J. Phys. Chem. 97(29), 7385 (1993)

    Article  Google Scholar 

  35. M. Tabib-Azar, W. Yuan, in IEEE Sensors 2010 conference, pp. 2235–2238

  36. J.A. Dean, Lange’s Handbook of Chemistry, 15th edn. (McGraw-Hill, New York, 1999). ISBN 0-07-016384-7

    Google Scholar 

  37. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma, M. Longmire, J. Gurley, J. Appl. Phys. 65(1), 164 (1989)

    Article  ADS  Google Scholar 

  38. B. Cappella, G. Dietler, Surf. Sci. Rep. 34(1–3), 1 (1999)

    Article  ADS  Google Scholar 

  39. J.L. Hutter, J. Bechhoefer, Rev. Sci. Instrum. 64(11), 3342 (1993)

    Article  ADS  Google Scholar 

  40. B. Kalache, P.R. i Cabarrocas, A.F. i Morral, Jpn. J. Appl. Phys. 45, L190 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support by DARPA/MTO under Grant N66001-08-1-204. SEM analysis performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, was supported by the Scientific User Facilities Division of the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas P. Grigoropoulos.

Additional information

Sang-gil Ryu and Eunpa Kim have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, Sg., Kim, E., Hwang, D.J. et al. Selective and directed growth of silicon nanowires by tip-enhanced local electric field. Appl. Phys. A 121, 255–260 (2015). https://doi.org/10.1007/s00339-015-9427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9427-2

Keywords

Navigation