Skip to main content
Log in

Metamaterial-based design for a half-wavelength plate in the terahertz range

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, a new design aimed to perform as a half-wavelength plate in the terahertz regime is presented. The fabricated samples exhibit a phase difference of 180° at 0.73 THz between the two principal polarisations that matches with the modelling results. The experimentally determined transmittances of the two polarisations were around 61 %, which is below theoretical predictions of reaching more than 90 %. The difference between the two results is explained, and possibilities for increasing the transmittance are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.U. Jepsen, D.G. Cooke, M. Koch, Laser Photonics Rev. 5, 124 (2011)

    Article  Google Scholar 

  2. E. Pickwell, B.E. Cole, A.J. Fitzgerald, M. Pepper, V.P. Wallace, Phys. Med. Biol. 49, 1595 (2004)

    Article  Google Scholar 

  3. B. Ferguson, X.-C. Zhang, Nat. Mater. 1, 26 (2002)

    Article  ADS  Google Scholar 

  4. M. Tonouchi, Nat. Photonics 1, 97 (2007)

    Article  ADS  Google Scholar 

  5. M.C. Hoffmann, J.A. Fülöp, J. Phys. D Appl. Phys. 44, 083001 (2011)

    Article  ADS  Google Scholar 

  6. A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley and Sons, Inc., New York, NY, 1983)

    Google Scholar 

  7. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, W. Zhang, Appl. Phys. Lett. 103, 171107 (2013)

    Article  ADS  Google Scholar 

  8. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.-T. Chen, Science 340, 1304 (2013)

    Article  ADS  Google Scholar 

  9. J.-B. Masson, G. Gallot, Opt. Lett. 31, 265 (2006)

    Article  ADS  Google Scholar 

  10. A.K. Kaveev, G.I. Kropotov, E.V. Tsygankova, I.A. Tzibizov, S.D. Ganichev, S.N. Danilov, P. Olbrich, C. Zoth, E.G. Kaveeva, A.I. Zhdanov, A.A. Ivanov, R.Z. Deyanov, B. Redlich, Appl. Opt. 52, B60 (2013)

    Article  Google Scholar 

  11. M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, H. Ohtake, Opt. Lett. 39, 146 (2014)

    Article  Google Scholar 

  12. J. Shan, J.I. Dadap, T.F. Heinz, Opt. Express 17, 7431 (2009)

    Article  Google Scholar 

  13. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  14. B. Wood, Laser Photonics Rev. 1, 249 (2007)

    Article  Google Scholar 

  15. L. Zhou, W. Wen, C. Chan, P. Sheng, Phys. Rev. Lett. 94, 243905 (2005)

    Article  ADS  Google Scholar 

  16. W. Sun, Q. He, J. Hao, L. Zhou, Opt. Lett. 36, 927 (2011)

    Article  ADS  Google Scholar 

  17. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, Opt. Express 16, 7181 (2008)

    Article  ADS  Google Scholar 

  18. R. Malureanu, M. Zalkovskij, Z. Song, C. Gritti, A. Andryieuski, Q. He, L. Zhou, P.U. Jepsen, A.V. Lavrinenko, Opt. Express 20, 22770 (2012)

    Article  ADS  Google Scholar 

  19. M. Zalkovskij, R. Malureanu, C. Kremers, D.N. Chigrin, A. Novitsky, S. Zhukovsky, P.T. Tang, P.U. Jepsen, A.V. Lavrinenko, Laser Photonics Rev. 7, 810 (2013)

    Article  Google Scholar 

  20. K.R. Williams, K. Gupta, M. Wasilik, J. Microelectromechan. Syst. 12, 761 (2003)

    Article  Google Scholar 

  21. R. Malureanu, A. Lavrinenko, D.G. Cooke, P.U. Jepsen, S. Xiao, L. Zhou, in Conference on Lasers Electro-Optics 2010 (OSA, Washington, D.C., 2010), p. CTuF7

  22. P.D. Cunningham, N.N. Valdes, F.A. Vallejo, L.M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A.K.-Y. Jen, J.C. Williams, R.J. Twieg, J. Appl. Phys. 109, 043505 (2011)

    Article  ADS  Google Scholar 

  23. H. Microsystems, PI-5878G Wet Etch Applications (2009), p. 11, http://hdmicrosystems.com/HDMicroSystems/en_US/pdf/PI-5878G_ProductBulletin.pdf

  24. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, R. Averitt, Phys. Rev. B 78, 241103 (2008)

    Article  ADS  Google Scholar 

  25. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, R. Beigang, Opt. Express 16, 6736 (2008)

    Article  ADS  Google Scholar 

  26. E. Perret, N. Zerounian, S. David, F. Aniel, Microelectron. Eng. 85, 2276 (2008)

    Article  Google Scholar 

  27. H. Bao, K. Nielsen, H.K. Rasmussen, P.U. Jepsen, O. Bang, Opt. Express 20, 29507 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

RM, MZ, PUJ, and AL acknowledge partial financial support from the FTP THzCOW project. WJS, QH, and LZ thank financial supports from the National Science Foundation of China (11174055, 11204040), the Program of Shanghai Subject Chief Scientist (12XD1400700), and the China Postdoctoral Science Foundation (2012M520039, 2013T60412).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Malureanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malureanu, R., Sun, W., Zalkovskij, M. et al. Metamaterial-based design for a half-wavelength plate in the terahertz range. Appl. Phys. A 119, 467–473 (2015). https://doi.org/10.1007/s00339-015-9078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9078-3

Keywords

Navigation