Skip to main content
Log in

Low voltage two-state-variable memristor model of vacancy-drift resistive switches

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We illustrate a heuristic two-state-variable memristor model of charged O vacancy-drift resistive switches that include the effects of internal Joule heating on both the electronic transport and the drift velocity (i.e., switching speed) of vacancies in the switching material. The dynamical state variables correspond to the cross-sectional area of a conducting channel in the device and the gap between the end of the channel and one of the electrodes. The model was calibrated against low voltage pulse-sweep and state-test data collected from a TaO x memristor so that the contributions of the channel gap, area and temperature to switching can be analyzed. The model agrees well with experimental results for long switching times and low-to-intermediate voltage operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Chua, Memristor-the missing circuit element. IEEE Trans.Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. L. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  3. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  4. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  ADS  Google Scholar 

  5. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)

    Article  ADS  Google Scholar 

  6. D.B. Strukov, R. Stanley Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94(3), 515–519 (2009)

    Article  ADS  Google Scholar 

  7. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    Article  Google Scholar 

  8. D. Ielmini, Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. Electron Devices, IEEE Trans. 58(12), 4309–4317 (2011)

    Article  ADS  Google Scholar 

  9. D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)

    Article  Google Scholar 

  10. S. Yu, X. Guan, H.S.P. Wong, Conduction mechanism of TiN/HfO x /Pt resistive switching memory: a trap-assisted-tunneling model. Appl. Phys. Lett. 99 (2011)

  11. J.J. Yang, J. Borghetti, D. Murphy, D.R. Stewart, R.S. Williams, A family of electronically reconfigurable nanodevices. Adv. Mater. 21(37), 3754–3758 (2009)

    Article  Google Scholar 

  12. D.S. Jeong, H. Schroeder, R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem. Solid State Lett. 10, G51–G53 (2007)

    Article  Google Scholar 

  13. D.B. Strukov, F. Alibart, R.S. Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107(3), 509–518 (2012)

    Article  ADS  Google Scholar 

  14. L.O. Chua, Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Syst. CAS 27, 1014–1044 (1980)

    Article  MathSciNet  Google Scholar 

  15. R.S. Williams, M.D. Pickett, in Memristors and Memristive Systems, ed. by R. Tetzlaff. The Art and Science of Constructing a Memristor Model. (Springer, New York, 2014), pp. 93–104

  16. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau and R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology. 20(215201), 1–9 (2009)

    Google Scholar 

  17. L. Zhang, Z. Chen, J.J. Yang, B. Wysocki, N. McDonald, Y. Chen, A compact modeling of TiO2-TiO2−x memristor. Appl. Phys. Lett. 102(15), 153503 (2013)

    Article  ADS  Google Scholar 

  18. M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 074508 (2009)

    Article  ADS  Google Scholar 

  19. F. Nardi, S. Larentis, S. Balatti, D.C. Gilmer, D. Ielmini, Resistive switching by voltage-driven ion migration in bipolar RRAM—part I: experimental study. IEEE Trans. 59(9), 2461–2467 (2012)

    Article  Google Scholar 

  20. S. Larentis, F. Nardi, S. Balatti, D.C. Gilmer, D. Ielmini, Resistive switching by voltage-driven ion migration in bipolar RRAM—part II: modeling. IEEE Trans. 59(9), 2468–2475 (2012)

    Article  Google Scholar 

  21. M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y. Kim, C. Kim, D. Seo, S. Seo, U. Chung, I. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10, 625–630 (2011)

    Article  ADS  Google Scholar 

  22. G.S. Park, Y.B. Kim, S.Y. Park, X.S. Li, S. Heo, M.J. Lee, M. Chang, J.H. Kwon, M., Kim, U., Chung, R. Dittmann, R. Waser, K. Kim, In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure. Nat. Commun. 4 (2013)

  23. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, M, Oshima, Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. Electron Devices Meet, 2008. IEDM 2008. IEEE International. pp. 1–4 (2008)

  24. J.J. Yang, J.P. Strachan, F. Miao, M.X. Zhang, M.D. Pickett, W. Yi, D.A.A. Ohlberg, G. Medeiros-Ribeiro, R.S. Williams, Metal/TiO2 interfaces for memristive switches. Appl. Phys. A 102, 785–789 (2011)

    Article  ADS  Google Scholar 

  25. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  ADS  Google Scholar 

  26. J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97(23), 232102–2321023 (2010)

    Article  ADS  Google Scholar 

  27. D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)

    Article  ADS  Google Scholar 

  28. F. Miao, W. Yi, I. Goldfarb, J. Joshua Yang, M.-X. Zhang, M.D. Pickett, J. Paul Strachan, G. Medeiros Ribeiro, R. Stanley Williams, Continuous electrical tuning of the chemical composition of TaO(x)-based memristors. ACS Nano 6(3), 2312–2318 (2012)

    Article  Google Scholar 

  29. F. Miao, J. Paul Strachan, J. Joshua Yang, M.-X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23(47), 5633 (2011)

    Article  Google Scholar 

  30. J.P. Strachan, M.D. Pickett, J.J. Yang, S. Aloni, A.L. David Kilcoyne, G. Medeiros-Ribeiro, R.S. Williams, Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22(32), 3573–3577 (2010)

    Article  Google Scholar 

  31. Y. Zhang, N. Deng, H. Wu, Z. Yu, J. Zhang, H. Qian, Metallic to hopping conduction transition in Ta2O5−x/TaOy resistive switching device. Appl. Phys. Lett. 105, 063508 (2014)

    Article  ADS  Google Scholar 

  32. F. Miao, J.J. Yang, J.P. Strachan, D. Stewart, R.S. Williams, C.N. Lau, Force modulation of tunnel gaps in metal oxide memristive nanoswitches. Appl. Phys. Lett. 95, 113503 (2009)

    Article  ADS  Google Scholar 

  33. R. Münstermann, J.J. Yang, J.P. Strachan, G. Medeiros-Ribeiro, R. Dittmann, R. Waser, Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching. physica status solidi (RRL) – Rapid Res. Lett. 4, 16–18 (2010)

    Article  ADS  Google Scholar 

  34. S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Origin of the ultra-ultranonlinear switching kinetics in oxide-based resistive switches. Adv. Funct. Mater. 21, 4487–4492 (2011)

    Article  Google Scholar 

  35. J.P. Strachan, A.C. Torrezan, F. Miao, M.D. Pickett, J.J. Yang, W. Yi, G. Medeiros-Ribeiro, R.S. Williams, State dynamics and modeling of tantalum oxide memristors. Electron Devices, IEEE Trans. 60(7), 2194–2202 (2013)

    Article  ADS  Google Scholar 

  36. P.R. Mickel, A.J. Lohn, B.J. Choi, J.J. Yang, M.X. Zhang, M.J. Marinella, C.D. James, R.S. Williams, A physical model of switching dynamics in tantalum oxide memristive devices. Appl. Phys. Lett. 102(22), 223502 (2013)

    Article  ADS  Google Scholar 

  37. S. Kim, S.J. Kim, K.M. Kim, S.R. Lee, M. Chang, E. Cho, Y.B. Kim, C.J. Kim, U. Chung, I.K. Yoo, Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Scientific Rep. 3, 1–6 (2013)

    Google Scholar 

  38. S. Yu, X. Guan, H.S.P. Wong, Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model. Appl. Phys. Let. 99(6), 063507 (2011)

    Article  ADS  Google Scholar 

  39. D. Ielmini, F. Nardi, S. Balatti, Evidence for voltage-driven set/reset processes in bipolar switching RRAM. IEEE Trans. Electron Devices 59(8), 2049–2056 (2012)

    Article  ADS  Google Scholar 

  40. J. Frenkel, On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54(8), 647 (1938)

    Article  ADS  MathSciNet  Google Scholar 

  41. G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M.D. Pickett, R.S. Williams, lognormal switching times for titanium dioxide bipolar memristors: origin and resolution. Nanotechnology 22, 095702 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the support of the HP Labs Innovation Research Program and NSF ECCS-1202225.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Zhang or R. Stanley Williams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ge, N., Joshua Yang, J. et al. Low voltage two-state-variable memristor model of vacancy-drift resistive switches. Appl. Phys. A 119, 1–9 (2015). https://doi.org/10.1007/s00339-015-9033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9033-3

Keywords

Navigation