Skip to main content
Log in

Optimization of the thermopower of antimony telluride thin film by introducing tellurium nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Antimony telluride (Sb2Te3) is one of the best thermoelectric materials at room temperature. Low dimension has the potential to improve the material thermoelectric properties. Herein, we demonstrate experimental evidence of the positive influence of tellurium (Te) nanoparticles on thermopower of Sb2Te3 thin film. Sb2Te3 films with Te nanoparticles are prepared by alternate growth of Sb2Te3 layers and Te layers. When the single Te layer thickness is 1 nm, Te nanoparticle diameter is about 5 nm and areal density is approximately 160 µm−2, the Seebeck coefficient increases by ~25 %, thermoelectric power factor by ~50 %, and thermal conductivity decreases by ~26 % compared with Te layer free Sb2Te3 film without Te nanoparticles. The enhancement of thermoelectric thermopower could be attributed to carrier energy filtering effect induced by Te–Sb2Te3 nanocrystal boundary, and the thermal conductivity reduction may be ascribed to enhance phonon scattering by Te nanoparticles. The results show the Te nanoparticles have the ability to improve Sb2Te3 material thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.C. Caylor, K. Coonley, J. Stuart, T. Colpitts, R. Venkatasubramanian, Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett. 87, 023105 (2005)

    Article  ADS  Google Scholar 

  2. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)

    Article  ADS  Google Scholar 

  3. Y.H. Park, J. Kim, H. Kim, I. Kim, K.Y. Lee, D. Seo, H.J. Choi, W. Kim, Thermal conductivity of VLS-grown rough Si nanowires with various surface roughnesses and diameters. Appl. Phys. A 104, 7–14 (2011)

    Article  ADS  Google Scholar 

  4. T.C. Harman, Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002)

    Article  ADS  Google Scholar 

  5. R. Kim, M.S. Lundstrom, Computational study of energy filtering effects in one-dimensional composite nano-structures. J. Appl. Phys. 111, 024508 (2012)

    Article  ADS  Google Scholar 

  6. D.K. Ko, Y. Kang, C.B. Murray, Enhanced thermopower via carrier energy filtering in solution-processable Pt–Sb2Te3 nanocomposites. Nano Lett. 11, 2841–2844 (2011)

    Article  Google Scholar 

  7. Y. Zhang, M.L. Snedaker, C.S. Birkel, S. Mubeen, X. Ji, Y. Shi, D. Liu, X. Liu, M. Moskovits, G.D. Stucky, Silver-based intermetallic heterostructures in Sb2Te3 thick films with enhanced thermoelectric power factors. Nano Lett. 12, 1075–1080 (2012)

    Article  ADS  Google Scholar 

  8. A. Minnich, M. Dresselhaus, Z. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)

    Article  Google Scholar 

  9. S. Faleev, F. Léonard, Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 77, 214304 (2008)

    Article  ADS  Google Scholar 

  10. S.I. Kim, S. Hwang, J.W. Roh, K. Ahn, D.H. Yeon, K.H. Lee, S.W. Kim, Experimental evidence of enhancement of thermoelectric properties in tellurium nanoparticle-embedded bismuth antimony telluride. J. Mater. Res. 27, 2449–2456 (2012)

    Article  ADS  Google Scholar 

  11. I.J. Yoo, Y. Song, D.C. Lim, N.V. Myung, K.H. Lee, M. Oh, D. Lee, Y.D. Kim, S. Kim, Y.H. Choa, J.Y. Lee, K.H. Lee, J.H. Lim, Thermoelectric characteristics of Sb2Te3 thin films formed via surfactant-assisted electrodeposition. J. Mater. Chem. A 1, 5430 (2013)

    Article  Google Scholar 

  12. Y. Zhang, M.L. Snedaker, C.S. Birkel, S. Mubeen, X. Ji, Y. Shi, D. Liu, X. Liu, M. Moskovits, G.D. Stucky, Silver-based intermetallic heterostructures in Sb2Te3 thick films with enhanced thermoelectric power factors. Nano Lett. 12, 1075–1080 (2012)

    Article  ADS  Google Scholar 

  13. G. Hao, X. Qi, G. Wang, X. Peng, S. Chang, X. Wei, J. Zhong, Synthesis and characterization of few-layer Sb2Te3 nanoplates with electrostatic properties. RSC Adv. 2, 10694 (2012)

    Article  Google Scholar 

  14. M.A. Matin, M. Mannir Aliyu, A.H. Quadery, N. Amin, Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis. Sol. Energy Mater. Sol. Cells 94, 1496–1500 (2010)

    Article  Google Scholar 

  15. D.W. Niles, X. Li, P. Sheldon, H. Höchst, A photoemission determination of the band diagram of the Te/CdTe interface. J. Appl. Phys. 77, 4489 (1995)

    Article  ADS  Google Scholar 

  16. D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802 (1990)

    Article  ADS  Google Scholar 

  17. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A. Majumdar, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006)

    Article  ADS  Google Scholar 

  18. Y. Kim, A. Divenere, G.K. Wong, J. Ketterson, S. Cho, J.R. Meyer, Structural and thermoelectric transport properties of Sb2Te3 thin films grown by molecular beam epitaxy. J. Appl. Phys. 91, 715–718 (2002)

    Article  ADS  Google Scholar 

  19. V.D. Das, P.G. Ganesan, Thickness and temperature effects on thermoelectric power and electrical resistivity of (Bi0.25Sb0.75)2Te3 thin films. Mater. Chem. Phys. 57, 57–66 (1998)

    Article  Google Scholar 

  20. J. Yu, X. Zhao, Q. Zhao, Effect of film thickness on the grain size and photocatalytic activity of the sol-gel derived nanometer TiO2 thin films. J. Mater. Sci. Lett. 19, 1015–1017 (2000)

    Article  Google Scholar 

  21. P. Ganesan, V.D. Das, Thickness and temperature effects on electrical resistivity of (Bi0.5Sb0.5)2Te3 thin films. Mater. Lett. 60, 2059–2065 (2006)

    Article  Google Scholar 

  22. O. Madelung, U. Rössler, M. Schulz, Non-Tetrahedrally Bonded Elements and Binary Compounds I (Springer, Berlin, 1998), pp. 1–2

    Book  Google Scholar 

  23. K. Rajasekar, L. Kungumadevi, A. Subbarayan, R. Sathyamoorthy, Thermal sensors based on Sb2Te3 and (Sb2Te3)70 (Bi2Te3)30 thin films. Ionics 14, 69–72 (2008)

    Article  Google Scholar 

  24. Z. Xiong, X. Chen, X. Huang, S. Bai, L. Chen, High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 58, 3995–4002 (2010)

    Article  Google Scholar 

  25. J. Zide, D. Vashaee, Z. Bian, G. Zeng, J. Bowers, A. Shakouri, A. Gossard, Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 74, 205335 (2006)

    Article  ADS  Google Scholar 

  26. J.H. Bahk, Z. Bian, A. Shakouri, Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials. Phys. Rev. B 87, 075204 (2013)

    Article  ADS  Google Scholar 

  27. B. Paul, A. Kumar, P. Banerji, Embedded Ag-rich nanodots in PbTe: enhancement of thermoelectric properties through energy filtering of the carriers. J. Appl. Phys. 108, 064322 (2010)

    Article  ADS  Google Scholar 

  28. M. Scheele, N. Oeschler, I. Veremchuk, S.-O. Peters, A. Littig, A. Kornowski, C. Klinke, H. Weller, Thermoelectric properties of lead chalcogenide core–shell nanostructures. ACS Nano 5, 8541–8551 (2011)

    Article  Google Scholar 

  29. M. Cutler, N. Mott, Observation of anderson localization in an electron gas. Phys. Rev. 181, 1336–1340 (1969)

    Article  ADS  Google Scholar 

  30. J.P. Heremans, C.M. Thrush, D.T. Morelli, Thermopower enhancement in PbTe with Pb precipitates. J. Appl. Phys. 98, 063703 (2005)

    Article  ADS  Google Scholar 

  31. X. Cai, X.A. Fan, Z. Rong, F. Yang, Z. Gan, G. Li, Improved thermoelectric properties of Bi2Te3−xSex alloys by melt spinning and resistance pressing sintering. J. Phys. D Appl. Phys. 47, 115101 (2014)

    Article  ADS  Google Scholar 

  32. W. Wang, X. Yan, B. Poudel, Y. Ma, Q. Hao, J. Yang, G. Chen, Z. Ren, Chemical synthesis of anisotropic nanocrystalline Sb2Te3 and low thermal conductivity of the compacted dense bulk. J. Nanosci. Nanotechnol. 8, 452–456 (2008)

    Article  Google Scholar 

  33. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A. Majumdar, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by Shanghai Science and Technology Funds (10520710400, 10PJ1403800, 11DZ1111200), Yunnan Provincial Science and Technology Department (2010AD003), National Natural Science Foundation of China (21103104), Innovation Foundation of Shanghai University, and the Special Fund for Selection and Cultivation Excellent Youth in the University of Shanghai city. The authors gratefully acknowledge the Instrumental Analysis Research Centre of Shanghai University for helping in XRD and TEM experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, H., Wu, Y. et al. Optimization of the thermopower of antimony telluride thin film by introducing tellurium nanoparticles. Appl. Phys. A 118, 1043–1051 (2015). https://doi.org/10.1007/s00339-014-8871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8871-8

Keywords

Navigation