Skip to main content
Log in

Electron propagation from a photo-excited surface: implications for time-resolved photoemission

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We perform time- and angle-resolved photoelectron spectroscopy on p-type GaAs(110). We observe an optically excited population in the conduction band, from which the time scales of intraband relaxation and surface photovoltage decay are both extracted. Moreover, the photovoltage shift of the valence band intriguingly persists for hundreds of picoseconds at negative delays. By comparing to a recent theoretical study, we reveal that the negative-delay dynamics reflects the interaction of the photoelectrons with a photovoltage-induced electric field outside the sample surface. We develop a conceptual framework to disentangle the intrinsic electron dynamics from this long-range field effect, which sets the foundation for understanding time-resolved photoemission experiments on a broad range of materials in which poor electronic screening leads to surface photovoltage. Finally, we demonstrate how the long-lasting negative-delay dynamics in GaAs can be utilized to conveniently establish the temporal overlap of pump and probe pulses in a time-resolved photoemission setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Schmitt et al., Science 321, 1649 (2008)

    Article  ADS  Google Scholar 

  2. J.A. Sobota et al., Phys. Rev. Lett. 108, 117403 (2012)

    Article  ADS  Google Scholar 

  3. Y.H. Wang et al., Phys. Rev. Lett. 109, 127401 (2012)

    Article  ADS  Google Scholar 

  4. M. Hajlaoui et al., Nano Lett. 12, 3532 (2012)

    Article  ADS  Google Scholar 

  5. L. Perfetti et al., Phys. Rev. Lett. 99, 197001 (2007)

    Article  ADS  Google Scholar 

  6. R. Cortés et al., Phys Rev. Lett. 107, 097002 (2011)

    Article  ADS  Google Scholar 

  7. J. Graf et al., Nat. Phys. 7, 805 (2011)

    Article  Google Scholar 

  8. C.L. Smallwood et al., Science 336, 1137 (2012)

    Article  ADS  Google Scholar 

  9. L. Rettig et al., New J. Phys. 15, 083023 (2013)

    Article  ADS  Google Scholar 

  10. L. Rettig, P.S. Kirchmann, U. Bovensiepen, New J. Phys. 14, 023047 (2012)

    Article  ADS  Google Scholar 

  11. Y. Muraoka et al., Appl. Phys. Lett. 85, 2950 (2004)

    Article  ADS  Google Scholar 

  12. C.A. Schmuttenmaer et al., Chem. Phys. 205, 91 (1996)

    Article  ADS  Google Scholar 

  13. P. Siffalovic, M. Drescher, U. Heinzman, Europhys. Lett. 60, 924 (2002)

    Article  ADS  Google Scholar 

  14. S. Tokudomi et al., J. Phys. Soc. Jpn. 77, 014711 (2008)

    Article  ADS  Google Scholar 

  15. J. Azuma et al., Phys. Stat. Sol. (C) 6, 307 (2009)

    Article  Google Scholar 

  16. W. Widdra et al., Surf. Sci. 543, 87 (2003)

    Article  ADS  Google Scholar 

  17. D. Lim, R. Haight, J. Vac. Sci. Technol. A 23, 1698 (2005)

    Article  ADS  Google Scholar 

  18. S.I. Tanaka, J. Electron Spectrosc. Relat. Phenom. 185, 152 (2012)

    Article  Google Scholar 

  19. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley-Interscience, Hoboken, 2007)

  20. W. Gudat, D.E. Eastman, J. Vac. Sci. Technol. 13, 831 (1976)

    Article  ADS  Google Scholar 

  21. E.J. Mele, J.D. Joannopoulos, Phys. Rev. B 19, 2928 (1979)

    Article  ADS  Google Scholar 

  22. J.R. Chelikowsky, M.L. Cohen, Phys. Rev. B 20, 4150 (1979)

    Article  ADS  Google Scholar 

  23. T.C. Chiang et al., Phys. Rev. B 21, 3513 (1980)

    Article  ADS  Google Scholar 

  24. T. Ichibayashi, K. Tanimura, Phys. Rev. Lett. 102, 087403 (2009)

    Article  ADS  Google Scholar 

  25. H. Petek, S. Ogawa, Prog. Surf Sci. 56, 239 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Makoto Gonokami, Dan Riley, and Jared Schwede for stimulating discussions. J. A. S. acknowledges support by the Stanford Graduate Fellowship. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Kirchmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, SL., Sobota, J.A., Kirchmann, P.S. et al. Electron propagation from a photo-excited surface: implications for time-resolved photoemission. Appl. Phys. A 116, 85–90 (2014). https://doi.org/10.1007/s00339-013-8154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8154-9

Keywords

Navigation