Skip to main content

Advertisement

Log in

Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study investigates the effects of pulse energy distributions on subwavelength ripple structures (the ablation shapes and subwavelength ripples) using the plasma model with the consideration of laser particle–wave duality. In the case studies, the laser pulse (800 nm, 50 fs) trains consist of double pulses within a train with the energy ratios of 1:2, 1:1, and 2:1. Localized transient electron densities, material optical properties, and surface plasmon generation are strongly affected by the energy distributions. Hence, the adjustment of the ablation shape and subwavelength ripples can be achieved based on localized transient electron dynamics control during femtosecond laser pulse train processing of dielectrics. The simulation results show that better, more uniform structures, in terms of ablation shapes and subwavelength ripples, can be easily formed at a lower fluence or subpulse energy ratio of 1:1 with a fixed fluence. It is also found that pulse trains at a 1:1 energy ratio are preferred for drilling high-aspect-ratio microholes or microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Meijer, K. Du, A. Gillner, D. Hoffmann, V.S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, W. Schulz, CIRP Ann. 51, 531 (2002)

    Article  Google Scholar 

  2. L. Li, M.H. Hong, M. Schmidt, M.L. Zhong, A. Malshe, B.H. in’tVeld, V.S. Kovalenko, CIRP Ann. 60, 735 (2011)

    Article  Google Scholar 

  3. R. Lloyd, A. Abdolvand, M. Schmidt, P. Crouse, D. Whitehead, Z. Liu, L. Li, Appl. Phys. A 93, 117 (2008)

    Article  ADS  Google Scholar 

  4. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, K. Wang, Appl. Phys. Lett. 82, 1703 (2003)

    Article  ADS  Google Scholar 

  5. Q.Z. Zhao, S. Malzer, L.J. Wang, Opt. Lett. 32, 1932 (2007)

    Article  ADS  Google Scholar 

  6. M. Pfeiffer, A. Engel, H. Gruettner, K. Guenther, F. Marquardt, G. Reisse, S. Weissmantel, Appl. Phys. A (2012). doi:10.1007/s00339-012-7146-5

    Google Scholar 

  7. A.Y. Vorobyev, V.S. Makin, C. Guo, J. Appl. Phys. 101, 03490 (2007)

    Article  Google Scholar 

  8. M. Rohloff, S.K. Das, S. Höhm, R. Grunwald, A. Rosenfeld, J. Krüger, J. Bonse, J. Appl. Phys. 110, 014910 (2011)

    Article  ADS  Google Scholar 

  9. F. Costache, M. Henyk, J. Reif, Appl. Surf. Sci. 208–209, 486 (2003)

    Article  Google Scholar 

  10. R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, H. Zimmermann, Appl. Phys. Lett. 98, 211905 (2011)

    Article  ADS  Google Scholar 

  11. S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, J. Bonse, Appl. Phys. A (2012). doi:10.1007/s00339-012-7184-z

    Google Scholar 

  12. E.M. Hsu, T.H. Crawford, C. Maunders, G.A. Botton, H.K. Haugen, Appl. Phys. Lett. 92, 221112 (2008)

    Article  ADS  Google Scholar 

  13. G. Zhou, P.M. Fauchet, A.E. Siegman, Phys. Rev. B 26, 5366 (1982)

    Article  ADS  Google Scholar 

  14. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  15. A. Borowiec, H.K. Haugen, Appl. Phys. Lett. 82, 4462 (2003)

    Article  ADS  Google Scholar 

  16. T. Jia, H. Chert, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, H. Kuroda, Phys. Rev. B 72, 125429 (2005)

    Article  ADS  Google Scholar 

  17. G. Miyaji, K. Miyazaki, Opt. Express 16, 16265 (2008)

    Article  ADS  Google Scholar 

  18. W. Yang, E. Bricchi, P.G. Kazansky, J. Bovatsek, A.Y. Arai, Opt. Express 14, 10117 (2006)

    Article  ADS  Google Scholar 

  19. F. Costache, M. Henyk, J. Reif, Appl. Surf. Sci. 186, 352 (2002)

    Article  ADS  Google Scholar 

  20. M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, J. Reif, Appl. Phys. A 69, S355 (1999)

    Article  ADS  Google Scholar 

  21. Y. Dong, P. Molian, Appl. Phys. Lett. 84, 10 (2004)

    Article  ADS  Google Scholar 

  22. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, ACS Nano 3, 4062 (2009)

    Article  Google Scholar 

  23. Y.P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y.F. Lu, H.L. Tsai, J. Phys. D, Appl. Phys. 45, 175301 (2012)

    Article  ADS  Google Scholar 

  24. E.M. Hsu, T.H. Crawford, H.F. Tiedje, H.K. Haugen, Appl. Phys. Lett. 91, 111102 (2007)

    Article  ADS  Google Scholar 

  25. S.K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, R. Grunwald, J. Appl. Phys. 105, 084912 (2009)

    Article  ADS  Google Scholar 

  26. F. Liang, R. Vallée, S.L. Chin, Appl. Phys. Lett. 100, 251105 (2012)

    Article  ADS  Google Scholar 

  27. A. Kiesow, S. Strohkark, K. Löschner, A. Heilmann, A. Podlipensky, A. Abdolvand, G. Seifert, Appl. Phys. Lett. 86, 153111 (2005)

    Article  ADS  Google Scholar 

  28. Y.P. Yuan, L. Jiang, X. Li, C. Wang, Y.F. Lu, J. Appl. Phys. 112, 103103 (2012)

    Article  ADS  Google Scholar 

  29. J.M. Pitarke, V.M. Silkin, E.V. Chulkovand, P.M. Echeique, Rep. Prog. Phys. 70, 1 (2007)

    Article  ADS  Google Scholar 

  30. L. Jiang, H.L. Tsai, J. Appl. Phys. 104, 093101 (2008)

    Article  ADS  Google Scholar 

  31. L. Jiang, H.L. Tsai, J. Phys. D, Appl. Phys. 37, 1492 (2004)

    Article  Google Scholar 

  32. S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, J. Appl. Phys. 112, 014901 (2012)

    Article  ADS  Google Scholar 

  33. L. Jiang, P.J. Liu, X.L. Yan, N. Leng, C.C. Xu, H. Xiao, Y.F. Lu, Opt. Lett. 37, 2781 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Basic Research Program of China (973 Program) (Grant No. 2011CB013000) and the National Natural Science Foundation of China (NSFC) (Grant Nos. 90923039 and 51025521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Y., Jiang, L., Li, X. et al. Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains. Appl. Phys. A 111, 813–819 (2013). https://doi.org/10.1007/s00339-013-7628-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7628-0

Keywords

Navigation