Skip to main content
Log in

Effect of alternating electric current on the nanoindentation of copper

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electromechanical interaction determines the structural reliability of electronic interconnects. Using the nanoindentation technique, the effect of alternating electric current on the indentation deformation of copper strips was studied for the indentation load in a range of 100 to 1600 μN at room temperature. During the test, an alternating electric current of the electric current density in a range of 1.25 to 4.88 kA/cm2 was passed through the copper strips. The indentation results showed that the reduced contact modulus decreased linearly with increasing the electric current density. The indentation hardness decreased with increasing the indentation deformation, demonstrating the normal indentation size effect. Using the model of strain gradient plasticity, we found that the strain gradient underneath the indentation decreased slightly with increasing the electric current density for the same indentation depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.L. Michael, C.-U. Kim, P. Gillespie, R. Augur, Electromigration failure in ultra-fine copper interconnects. J. Electron. Mater. 32, 988–993 (2003)

    Article  ADS  Google Scholar 

  2. A. Gladkikh, Y. Lereah, E. Glickman, M. Karpovski, A. Palevski, J. Schubert, Hillock formation during electromigration in Cu and Al thin films: three-dimensional grain growth. Appl. Phys. Lett. 66, 1214–1216 (1995)

    Article  ADS  Google Scholar 

  3. A.W. Park, R.W. Vook, Activation energy for electromigration in Cu films. Appl. Phys. Lett. 59, 175–177 (1991)

    Article  ADS  Google Scholar 

  4. T. Nitta, T. Ohmi, M. Otsuki, T. Takewaki, T. Shibata, Electrical-properties of giant-grain copper thin-films formed by a low kinetic-energy particle process. J. Electrochem. Soc. 139, 922–927 (1992)

    Article  Google Scholar 

  5. A.S. Budiman, W.D. Nix, N. Tamura, B.C. Valek, K. Gadre, J. Maiz, R. Spolenak, J.R. Patel, Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction. Appl. Phys. Lett. 88, 233515 (2006)

    Article  ADS  Google Scholar 

  6. H. Zhang, G.S. Cargill III, Electromigration-induced strain relaxation in Cu conductor lines. J. Mater. Res. 26, 498–502 (2011)

    Article  Google Scholar 

  7. K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, K.N. Tu, Stability of nanoscale twins in copper under electric current stressing. J. Appl. Phys. 108, 066103 (2010)

    Article  ADS  Google Scholar 

  8. H. Ogi, A. Yamamoto, K. Kondou, K. Nakano, K. Morita, N. Nakamura, T. Ono, M. Hirao, Significant softening of copper nanowires during electromigration studied by picosecond ultrasound spectroscopy. Phys. Rev. B 82, 155436 (2010)

    Article  ADS  Google Scholar 

  9. S. Sebastiant, S.K. Biswast, Effect of interface friction on the mechanics of indentation of a finite layer resting on a rigid substrate. J. Phys. D, Appl. Phys. 24, 1131–1140 (1991)

    Article  ADS  Google Scholar 

  10. W.J. Poole, M.F. Ashby, N.A. Fleck, Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34, 559–564 (1996)

    Article  Google Scholar 

  11. M.M. Chaudhri, Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper. Acta Mater. 46, 3047–3056 (1998)

    Article  Google Scholar 

  12. F.Q. Yang, G.F. Zhao, Effect of electric current on nanoindentation of copper. Nanosci. Nanotechnol. Lett. 2, 322–326 (2010)

    Article  Google Scholar 

  13. R. Chen, F.Q. Yang, Impression creep of a Sn60Pb40 alloy: the effect of electric current. J. Phys. D 41, 155406 (2008)

    Article  ADS  Google Scholar 

  14. R. Chen, F.Q. Yang, Effect of DC current on the creep deformation of tin. J. Electron. Mater. 39, 2611–2617 (2010)

    Article  ADS  Google Scholar 

  15. R. Chen, F.Q. Yang, Effect of electric current on the creep deformation of lead. Mater. Sci. Eng. A 528, 2319–2325 (2011)

    Article  Google Scholar 

  16. F.Q. Yang, K. Geng, P.K. Liaw, G. Fan, H. Choo, Deformation in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during nanoindentation. Acta Mater. 55, 321–327 (2007)

    Article  Google Scholar 

  17. V. Srinivasarao, R. Jayaganthan, V.N. Sekhar, K. Mohankumar, A.A.O. Tay, V. Kripesh, Nanoindentation study of the sputtered Cu thin films for interconnect applications, in IEEE Electron. Packaging Tech. Conf. (2004), pp. 343–347

    Google Scholar 

  18. X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation. Acta Mater. 52, 4291–4303 (2004)

    Article  Google Scholar 

  19. M. Atkinson, Origin of the size effect in indentation of metals. Int. J. Mech. Sci. 33, 843–850 (1991)

    Article  Google Scholar 

  20. E. Manika, J. Maniks, Size effects in micro- and nanoscale indentation. Acta Mater. 54, 2049–2056 (2006)

    Article  Google Scholar 

  21. M.F. Ashby, Work hardening of dispersion-hardened crystals. Philos. Mag. 14, 1157–1178 (1966)

    Article  ADS  Google Scholar 

  22. N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  ADS  MATH  Google Scholar 

  23. P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379–1406 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. H.B. Muhlhaus, E.C. Aifantis, A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)

    Article  MathSciNet  Google Scholar 

  25. G.F. Zhao, M. Liu, F.Q. Yang, The effect of an electric current on the nanoindentation behavior of tin. Acta Mater. 60, 3773–3782 (2012)

    Article  Google Scholar 

  26. D.L. Joslin, W.C. Oliver, A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5, 123–126 (1990)

    Article  ADS  Google Scholar 

  27. T.Y. Zhang, W.H. Xu, Surface effects on nanoindentation. J. Mater. Res. 17, 1715–1720 (2002)

    Article  ADS  Google Scholar 

  28. T.Y. Zhang, W.H. Xu, M.H. Zhao, The role of plastic deformation at a rough surface in the size-dependent hardness. Acta Mater. 52, 57–68 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by NSF through Grant No. CMMI 0800018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, G., Yang, F. Effect of alternating electric current on the nanoindentation of copper. Appl. Phys. A 109, 553–559 (2012). https://doi.org/10.1007/s00339-012-7078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7078-0

Keywords

Navigation