Skip to main content
Log in

The influence of AlN interlayers on the microstructural and electrical properties of p-type AlGaN/GaN superlattices grown on GaN/sapphire templates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

AlN with different thicknesses were grown as interlayers (ILs) between GaN and p-type Al0.15Ga0.85N/GaN superlattices (SLs) by metal organic vapor phase epitaxy (MOVPE). It was found that the edge-type threading dislocation density (TDD) increased gradually from the minimum of 2.5×109 cm−2 without AlN IL to the maximum of 1×1010 cm−2 at an AlN thickness of 20 nm, while the screw-type TDD remained almost unchanged due to the interface-related TD suppression and regeneration mechanism. We obtained that the edge-type dislocations acted as acceptors in p-type Al x Ga1−x N/GaN SLs, through the comparison of the edge-type TDD and hole concentration with different thicknesses of AlN IL. The Mg activation energy was significantly decreased from 153 to 70 meV with a 10-nm AlN IL, which was attributed to the strain modulation between AlGaN barrier and GaN well. The large activation efficiency, together with the TDs, led to the enhanced hole concentration. The variation trend of Hall mobility was also observed, which originated from the scattering at TDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.C. Lu, S.W. Chen, T.T. Wu, P.M. Tu, C.K. Chen, C.H. Chen, Z.Y. Li, H.C. Kuo, S.C. Wang, Appl. Phys. Lett. 97, 071114 (2010)

    Article  ADS  Google Scholar 

  2. S. Nakamura, N. Iwasa, M. Senoh, S. Nagahama, T. Yamada, T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995)

    Article  ADS  Google Scholar 

  3. E.F. Schubert, J.K. Kim, Science 308, 1274 (2005)

    Article  ADS  Google Scholar 

  4. H. Nakayama, P. Hacke, M.R.H. Khan, T. Detchprohm, K. Hiramatsu, N. Sawaki, Jpn. J. Appl. Phys., Part 2 35, L282 (1996)

    Article  ADS  Google Scholar 

  5. T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, M. Koike, Appl. Phys. Lett. 65, 593 (1994)

    Article  ADS  Google Scholar 

  6. W. Götz, N.M. Johnson, J. Walker, D.P. Bour, R.A. Street, Appl. Phys. Lett. 68, 667 (2002)

    Article  Google Scholar 

  7. H. Wang, J. Liu, N. Niu, G. Shen, S. Zhang, J. Cryst. Growth 304, 7 (2007)

    Article  ADS  Google Scholar 

  8. C. Bayram, J.L. Pau, R. McClintock, M. Razeghi, J. Appl. Phys. 104, 083512 (2003)

    Article  ADS  Google Scholar 

  9. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Osinsky, P.E. Norris, S.J. Pearton, J.V. Hove, A. Wowchak, P.P. Chow, Appl. Phys. Lett. 79, 4372 (2001)

    Article  ADS  Google Scholar 

  10. L. Chernyak, A. Osinsky, V.N. Fuflyigin, J.W. Graff, E.F. Schubert, IEEE Trans. Electron Devices 48, 433 (2001)

    Article  ADS  Google Scholar 

  11. M.Z. Kauser, A. Osinsky, A.M. Dabiran, P.P. Chow, Appl. Phys. Lett. 85, 5275 (2004)

    Article  ADS  Google Scholar 

  12. L. Wang, R. Li, D. Li, N. Liu, L. Liu, W. Chen, C. Wang, Z. Yang, X. Hu, Appl. Phys. Lett. 96, 061110 (2010)

    Article  ADS  Google Scholar 

  13. H. Amano, M. Iwaya, N. Hayashi, T. Kashima, S. Nitta, C. Wetzel, I. Akasaki, Phys. Status Solidi B 216, 683 (1999)

    Article  ADS  Google Scholar 

  14. L. Lu, B. Shen, F.J. Xu, B. Gao, S. Huang, Z.L. Miao, Z.X. Qin, Z.J. Yang, G.Y. Zhang, X.P. Zhang, J. Xu, D.P. Yu, J. Appl. Phys. 103, 113510 (2008)

    Article  ADS  Google Scholar 

  15. R.Q. Jin, J.P. Liu, J.C. Zhang, H. Yang, J. Cryst. Growth 268, 35 (2004)

    Article  ADS  Google Scholar 

  16. J. Bläsing, A. Reiher, A. Dadgar, A. Diez, A. Krost, Appl. Phys. Lett. 81, 2722 (2002)

    Article  ADS  Google Scholar 

  17. C. McAleese, M.J. Kappers, F.D.G. Rayment, P. Cherns, J. Cryst. Growth 272, 475 (2004)

    Article  ADS  Google Scholar 

  18. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan, Electron Microscopy of Thin Crystals (Krieger, New York, 1977)

    Google Scholar 

  19. J.F. Nye, Physical Properties of Crystals (Oxford, New York, 1975)

    Google Scholar 

  20. R. People, J.C. Bean, Appl. Phys. Lett. 47, 322 (1985)

    Article  ADS  Google Scholar 

  21. M. Albrecht, I.P. Nikitina, A.E. Nikolaev, Yu.V. Melnik, V.A. Dmitriev, H.P. Strunk, Phys. Status Solidi A 176, 453 (1999)

    Article  ADS  Google Scholar 

  22. S.K. Mathis, A.E. Romanov, L.F. Chen, G.E. Beltz, W. Pompe, J.S. Speck, J. Cryst. Growth 231, 371 (2001)

    Article  ADS  Google Scholar 

  23. J. Jasinski, Z. Liliental-Weber, J. Electron. Mater. 31, 429 (2002)

    Article  ADS  Google Scholar 

  24. M.W. Zhu, S. You, T. Detchprohm, T. Paskova, E.A. Preble, D. Hanser, C. Wetzel, Phys. Rev. B 81, 125325 (2010)

    Article  ADS  Google Scholar 

  25. S. Terao, M. Iwaya, T. Sano, T. Nakamura, S. Kamiyama, H. Amano, I. Akasaki, J. Cryst. Growth 237–239, 947 (2002)

    Article  Google Scholar 

  26. N. Kuwano, T. Tsuruda, Y. Adachi, S. Terao, S. Kamiyama, H. Amano, I. Akasaki, Phys. Status Solidi A 192, 367 (2002)

    Article  ADS  Google Scholar 

  27. S. Pereira, M.R. Correia, E. Pereira, K.P. O’Donnell, E. Alves, A.D. Sequeira, N. Franco, I.M. Watson, C.J. Deatcher, Appl. Phys. Lett. 80, 3913 (2002)

    Article  ADS  Google Scholar 

  28. B.N. Pantha, A. Sedhain, J. Li, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 95, 261904 (2009)

    Article  ADS  Google Scholar 

  29. D. Cherns, C.G. Jiao, H. Mokhtari, J. Cai, F.A. Ponce, Phys. Status Solidi B 234, 924 (2002)

    Article  ADS  Google Scholar 

  30. A. Krtschil, A. Dadgar, A. Krost, Appl. Phys. Lett. 82, 2263 (2003)

    Article  ADS  Google Scholar 

  31. N. Miller, E.E. Haller, G. Koblmüller, C. Gallinat, J.S. Speck, W.J. Schaff, M.E. Hawkridge, K.M. Yu, J.W. Ager III, Phys. Rev. B 84, 075135 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Baojuan Sun for helpful discussions. This work was supported by the National High Technology Program of China under Grant No. 2007AA03Z403, the National Natural Science Foundation of China under Grant Nos. 61076013, 51102003, 60776042 and 60990313, the Research Fund for the Doctoral Program of Higher Education under Grant No. 20100001120014. The author would like to acknowledge the support given by all the staff during the measurements at the beamline 1W1A at BSRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Liu, L., Wang, L. et al. The influence of AlN interlayers on the microstructural and electrical properties of p-type AlGaN/GaN superlattices grown on GaN/sapphire templates. Appl. Phys. A 108, 857–862 (2012). https://doi.org/10.1007/s00339-012-6984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6984-5

Keywords

Navigation