Skip to main content
Log in

Identification and synthesis of novel biomaterials based on spider structural silk fibers

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The diversity in function and mechanical behavior of spider silks, and the ability to produce these silks recombinantly, have tremendous potential in creating a new class of biomimetic materials. Here we investigate the structural and mechanical properties of pyriform silks from the golden orb-weaver, Nephila clavipes. Nanoscale indentation measurements using atomic force microscopy on natural pyriform silk suggests that this biomaterial has high toughness that may be suitable for dissipating high amounts of mechanical energy. We also observed the occurrence of highly organized nanocrystals within the pyriform silk fibers that may contribute to the remarkable energy dissipation capability of these silks. It has been demonstrated that poly-(Gly–Ala) and poly-Ala stretches within the internal block repeat modules of dragline silk fibroins form nanocrystals, and these nanocrystalline structures may be responsible for the high extensibility of the dragline silks. In contrast, amino acid sequence analysis shows that PySp2 does not contain the same motifs. In the absence of poly-(Gly–Ala) and poly-Ala repeats, we hypothesized that PySp2 contains new protein motifs sufficient to polymerize into functional structures. To investigate the functional contributions of these novel motifs during pyriform fiber formation, we expressed different recombinant PySp2 fibroins with various segments spanning its block repeat units. We demonstrate that PySp2 recombinant proteins with the Pro-rich sub-block domain (PXP motifs, where X= sub-set of the amino acids A, L, or R) and/or the Ser + Gln + Ala-rich sub-block domain (QQSSVAQS motifs) are sufficient for artificial fiber formation. Moreover, we show that recombinant PySp2 proteins that contain a single block repeat unit can self-assemble into foam-like nanostructures. Collectively, our findings support the use of PySp2 recombinant proteins for a wide range of biomimetic materials with morphologies ranging from fibers to porous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Xu, R.V. Lewis, Proc. Natl. Acad. Sci. USA 87, 7120 (1990)

    Article  ADS  Google Scholar 

  2. M.B. Hinman, R.V. Lewis, J. Biol. Chem. 267, 19320 (1992)

    Google Scholar 

  3. A. Sponner, B. Schlott, F. Vollrath, E. Unger, F. Grosse, K. Weisshart, Biochemistry 44, 4727 (2005)

    Article  Google Scholar 

  4. X. Hu, K. Kohler, A.M. Falick, A.M. Moore, P.R. Jones, C. Vierra, Biochemistry 45, 3506 (2006)

    Article  Google Scholar 

  5. R.V. Lewis, C.Y. Hayashi, Science 287, 1477 (2000)

    Article  ADS  Google Scholar 

  6. A. Sponner, E. Unger, F. Grosse, K. Weisshart, Biomacromolecules 5, 840 (2004)

    Article  Google Scholar 

  7. A. Rising, G. Hjalm, W. Engstrom, J. Johansson, Biomacromolecules 7, 3120 (2006)

    Article  Google Scholar 

  8. P. Geurts, L. Zhao, Y. Hsia, E. Gnesa, S. Tang, F. Jeffery, C.L. Mattina, A. Franz, L. Larkin, C. Vierra, Biomacromolecules 11, 3495 (2010)

    Article  Google Scholar 

  9. R. Foelix, Biology of Spiders (Oxford University Press, New York, 1996)

    Google Scholar 

  10. B. Swanson, T. Blackledge, J. Beltran, C. Hayashi, Appl. Phys. A 82, 213 (2006)

    Article  ADS  Google Scholar 

  11. J.D. van Beek, S. Hess, F. Vollrath, B.H. Meier, Proc. Natl. Acad. Sci. USA 99, 10266 (2002)

    Article  Google Scholar 

  12. B.L. Thiel, K.B. Guess, C. Viney, Biopolymers 41, 703 (1997)

    Article  Google Scholar 

  13. T. Lefevre, M.E. Rousseau, M. Pezolet, Biophys. J. 92, 2885 (2007)

    Article  ADS  Google Scholar 

  14. S. Keten, Z. Xu, B. Ihle, M.J. Buehler, Nat. Mater. 9, 359 (2010)

    Article  ADS  Google Scholar 

  15. A. Simmons, E. Ray, L.W. Jelinski, Macromolecules 27, 5235 (1994)

    Article  ADS  Google Scholar 

  16. W. Oliver, G. Pharr, J. Mater. Res. 19, 3 (2004)

    Article  ADS  Google Scholar 

  17. S. Tang, P. Mathews, C. Randall, E. Yurtsev, K. Fields, A. Wong, A. Kuo, A. Alliston, P. Hansma, Polym. Test. 29, 159 (2009)

    Article  Google Scholar 

  18. X. Hu, B. Lawrence, K. Kohler, A.M. Falick, A.M. Moore, E. McMullen, P.R. Jones, C. Vierra, Biochemistry 44, 10020 (2005)

    Article  Google Scholar 

  19. M. Tian, R.V. Lewis, Biochemistry 44, 8006 (2005)

    Article  Google Scholar 

  20. N.A. Ayoub, J.E. Garb, R.M. Tinghitella, M.A. Collin, C.Y. Hayashi, PLoS ONE 2, e514 (2007)

    Article  ADS  Google Scholar 

  21. D.J. Perry, D. Bittencourt, J. Siltberg-Liberles, E.L. Rech, R.V. Lewis, Biomacromolecules 18, 3000 (2010)

    Article  Google Scholar 

  22. F. Hagn, L. Eisoldt, J.G. Hardy, C. Vendrely, M. Coles, T. Scheibel, H. Kessler, Nature 465, 239 (2010)

    Article  ADS  Google Scholar 

  23. F. Teule, A.R. Cooper, W.A. Furin, D. Bittencourt, E.L. Rech, A. Brooks, R.V. Lewis, Nat. Protoc. 4, 341 (2009)

    Article  Google Scholar 

  24. S.A. Anthoula Lazaris, Y. Huang, J.-F. Zhou, F. Duguay, N. Chretien, E.A. Welsh, J.W. Soares, C.N. Karatzas, Science 295, 472 (2002)

    Article  ADS  Google Scholar 

  25. X.X. Xia, Z.G. Qian, C.S. Ki, Y.H. Park, D.L. Kaplan, S.Y. Lee, Proc. Natl. Acad. Sci. USA 107, 14059 (2010)

    Article  ADS  Google Scholar 

  26. D. Huemmerich, U. Slotta, T. Scheibel, Appl. Phys. A 82, 219 (2006)

    Article  ADS  Google Scholar 

  27. K. Spiess, A. Lammel, T. Scheibel, Macromol. Biosci. 10, 998 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Vierra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsia, Y., Gnesa, E., Tang, S. et al. Identification and synthesis of novel biomaterials based on spider structural silk fibers. Appl. Phys. A 105, 301–309 (2011). https://doi.org/10.1007/s00339-011-6621-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6621-8

Keywords

Navigation