Skip to main content
Log in

Superheating in liquid and solid phases during femtosecond-laser pulse interaction with thin metal film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Superheating of the liquid phase caused by non-equilibrium evaporation during femtosecond-laser processing of a thin metal film is investigated by adopting the wave hypothesis along with the two-temperature model. The simulation results show that the superheating in the liquid occurs shortly after the evaporation. For a 100-fs laser pulse of 0.7 J/cm2, the maximum degree of superheating in liquid can reach 600 K. The superheating in solid can also be captured in the current model, which can be as high as 300 K. The effects of laser fluence, pulse duration and film thickness on the degree of superheating were studied. A higher laser fluence will increase the degree of superheating in liquid significantly but has little effect for the solid part. In the range adopted in the current work, the pulse duration has little effect on the degree of superheating in both liquid and solid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Be :

coefficient for electron heat capacity (J/m3 K2)

C :

heat capacity (J/m3 K)

c :

speed of sound (m/s)

c p :

specific heat (J/kg K)

G :

electron-lattice coupling coefficient (W/m3 K)

h :

latent heat of phase change (J/kg)

J :

heat source fluence (J/m2)

k :

thermal conductivity (W/m K)

L :

thickness of the metal film (m)

M :

molar mass (kg/kmol)

p :

pressure (Pa)

q″:

heat flux (W/m2)

R :

reflectivity

R g :

specific gas constant (J/kg K)

R u :

universal gas constant (J/kmol K)

s :

interfacial location (m)

S :

intensity of the internal heat source (W/m3)

t :

time (s)

t p :

pulse width (s)

T :

temperature (K)

T F :

Fermi temperature (K)

T m :

melting point (K)

u :

interfacial velocity (m/s)

V 0 :

interfacial velocity factor (m/s)

x :

coordinate (m)

δ :

optical penetration depth (m)

δ b :

ballistic range (m)

ε :

total emissivity

ρ :

density (kg/m3)

σ :

Stefan-Boltzmann constant (W/m2 K4)

τ :

variable of integration that denotes temperature (K)

0:

last time step

e :

electron

eq :

thermal equilibrium state

i :

initial condition

l :

lattice

:

liquid

ℓv :

liquid–vapor interface

R :

thermal radiation

s :

solid

sℓ :

solid–liquid interface

sur :

surface

∞:

ambient environment

References

  1. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  2. T.Q. Qiu, C.L. Tien, J. Heat Transf. 115, 835 (1993)

    Article  Google Scholar 

  3. D.Y. Tzou, Macro- to Microscale Heat Transfer (Taylor & Francis, Washington, 1997)

    Google Scholar 

  4. D.Y. Tzou, in Handbook of Numerical Heat Transfer, 2nd edn., ed. by W.J. Minkowycz, E.M. Sparrow, J.Y. Murthy (Wiley, Hoboken, 2006)

    Google Scholar 

  5. L. Jiang, H.L. Tsai, J. Heat Transf. 127, 1167 (2005)

    Article  Google Scholar 

  6. J.K. Chen, D.Y. Tzou, J.E. Beraun, Int. J. Heat Mass Transf. 49, 307 (2006)

    Article  MATH  Google Scholar 

  7. D. Von Der Linde et al., in Materials Research Society Symposia Proceedings, vol. 74, (Materials Research Society, Warrendale 1987), p. 103

    Google Scholar 

  8. Y. Zhang, J.K. Chen, J. Heat Transf. 130, 062401 (2008)

    Article  Google Scholar 

  9. Y. Zhang, J.K. Chen, Appl. Phys. A, Mater. Sci. Process. 88, 289 (2007)

    Article  ADS  Google Scholar 

  10. J.K. Chen, W.P. Latham, J.E. Beraun, J. Laser Appl. 17, 63 (2005)

    Article  Google Scholar 

  11. S.I. Anisimov, V.A. Khokhlov, Instabilities in Laser–Matter Interaction (CRC Press, Boca Raton, 1995)

    Google Scholar 

  12. I.H. Chowdhury, X. Xu, Numer. Heat Transf., a Appl. 44, 219 (2003)

    Article  ADS  Google Scholar 

  13. J. Huang, Y. Zhang, J.K. Chen, Int. J. Heat Mass Transf. 52, 3091 (2009)

    Article  MATH  Google Scholar 

  14. J. Huang, Y. Zhang, J.K. Chen, Appl. Phys. A, Mater. Sci. Process. 95, 643 (2009)

    Article  ADS  Google Scholar 

  15. Y. Okano et al., Appl. Surf. Sci. 197–198, 281 (2002)

    Article  Google Scholar 

  16. S.A. Pikuz et al., JETP Lett. 66, 480 (1997)

    Article  ADS  Google Scholar 

  17. A.D. Rakhel, G.S. Sarkisov, Int. J. Thermophys. 25, 1215 (2004)

    Article  ADS  Google Scholar 

  18. M. Boivineau, G. Pottlacher, Int. J. Mater. Prod. Technol. 26, 217 (2006)

    Google Scholar 

  19. B.M. Novac et al., in PPPS-2007—Pulsed Power Plasma Science 2007 (2007), p. 1004

    Google Scholar 

  20. C.E. Hollandsworth et al., J. Appl. Phys. 84, 4992 (1998)

    Article  ADS  Google Scholar 

  21. M.J. Taylor, J. Phys. D, Appl. Phys. 35, 700 (2002)

    Article  ADS  Google Scholar 

  22. F.D. Bennett, Phys. Fluids 8, 1425 (1965)

    Article  Google Scholar 

  23. F.D. Bennett, in Physics of High Energy Density, ed. by P. Caldirola, H. Knoepfel (Academic Press, New York, 1971)

    Google Scholar 

  24. L. Harris, A.L. Loeb, J. Opt. Soc. Am. 43, 1114 (1953)

    Article  ADS  Google Scholar 

  25. S.I. Anisimov, B. Rethfeld, in Proceedings of SPIE—The International Society for Optical Engineering (1997), pp. 192

    Google Scholar 

  26. L.-S. Kuo, T. Qiu, in ASME National Heat Transfer Conference (ASME, New York, 1996), p. 149

    Google Scholar 

  27. S.S. Wellershoff et al., Appl. Phys. A, Mater. Sci. Process. 69, S99 (1999)

    ADS  Google Scholar 

  28. P.G. Klemens, R.K. Williams, Int. Met. Rev. 31, 197 (1986)

    Article  Google Scholar 

  29. A. Faghri, Y. Zhang, Transport Phenomena in Multiphase Systems (Elsevier, Burlington, 2006)

    Google Scholar 

  30. R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, (Interscience, New York, 1976), vol. 21, p. 92

    MATH  Google Scholar 

  31. F.D. Bennett, in High Temperature Physics and Chemistry, ed. by C.A. Rouse (Pergamon, Elmsford, 1968), p. 1

    Google Scholar 

  32. G.D. Kahl, Phys. Rev. 155, 78 (1967)

    Article  ADS  Google Scholar 

  33. I. Barin, Thermochemical Data of Pure Substance, Part I (VCH, New York, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Zhang, Y. & Chen, J.K. Superheating in liquid and solid phases during femtosecond-laser pulse interaction with thin metal film. Appl. Phys. A 103, 113–121 (2011). https://doi.org/10.1007/s00339-010-6175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6175-1

Keywords

Navigation