Skip to main content
Log in

Properties of reactively sputtered W–B–N thin film as a diffusion barrier for Cu metallization on Si

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin films of W–B–N (10 nm) have been evaluated as diffusion barriers for Cu interconnects. The amorphous W–B–N thin films were prepared at room temperature via reactive magnetron sputtering using a W2B target at various N2/(Ar + N2) flow ratios. Cu diffusion tests were performed after in-situ deposition of 200 nm Cu. Thermal annealing of the barrier stacks was carried out in vacuum at elevated temperatures for one hour. X-ray diffraction patterns, sheet resistance measurement, cross-section transmission electron microscopy images, and energy-dispersive spectrometer scans on the samples annealed at 500°C revealed no Cu diffusion through the barrier. The results indicate that amorphous W–B–N is a promising low resistivity diffusion barrier material for copper interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Gutmann, T.P. Chow, A.E. Kaloyeros, W.A. Lanford, S.P. Muraka, Thin Solid Films 262, 177 (1995)

    Article  ADS  Google Scholar 

  2. S. Sze, VLSI Technology (McGraw Hill, New York, 1988), p. 309

    Google Scholar 

  3. Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, W.G. Oldham, J. Electrochem. Soc. 140, 2427 (1993)

    Article  Google Scholar 

  4. J.D. Mc Brayer, R.M. Swanson, T.W. Sigmon, J. Electrochem. Soc. 133, 1424 (1986)

    Article  Google Scholar 

  5. C.S. Fuller, J.D. Struthers, J.A. Ditzenberger, K.B. Wolfstirn, Phys. Rev. 93, 1182 (1954)

    Article  ADS  Google Scholar 

  6. S. Sze, J.C. Irvin, Solid State Electron. 11, 599 (1968)

    Article  ADS  Google Scholar 

  7. International Technology Roadmap for Semiconductors (ITRS), 2006 Update (http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm)

  8. S. Rawal, D.P. Norton, T.J. Anderson, L. McElwee-White, Appl. Phys. Lett. 87, 111902 (2005)

    Article  ADS  Google Scholar 

  9. O.J. Bchir, K.M. Green, H.M. Ajmera, E.A. Zapp, T.J. Anderson, B.C. Brooks, L.L. Reitfort, D.H. Powell, K.A. Abboud, L. McElwee-White, J. Am. Chem. Soc. 127, 7825 (2005)

    Article  Google Scholar 

  10. T.N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, L.C. Chen, Appl. Phys. Lett. 86, 083104 (2005)

    Article  ADS  Google Scholar 

  11. S. Rawal, D.P. Norton, K.C. Kim, T.J. Anderson, L. McElwee-White, Appl. Phys. Lett. 89, 231914 (2006)

    Article  ADS  Google Scholar 

  12. S. Rawal, E. Lambers, D.P. Norton, T.J. Anderson, L. McElwee-White, J. Appl. Phys. 100, 063532 (2006)

    Article  ADS  Google Scholar 

  13. Q. Xie, X.-P. Qu, J.-J. Tan, Y.-L. Jiang, M. Zhou, T. Chen, G.-P. Ru, Appl. Surf. Sci. 253, 1666 (2006)

    Article  ADS  Google Scholar 

  14. P. Majumder, C. Takoudis, Appl. Phys. Lett. 91, 162108 (2007)

    Article  ADS  Google Scholar 

  15. S. Rawal, D.P. Norton, H. Ajmera, T.J. Anderson, L. McElwee-White, Appl. Phys. Lett. 90, 051913 (2007)

    Article  ADS  Google Scholar 

  16. T.Y. Lin, H.Y. Cheng, T.S. Chin, C.F. Chiu, J.S. Fang, Appl. Phys. Lett. 91, 152908 (2007)

    Article  ADS  Google Scholar 

  17. M.H. Tsai, C.W. Wang, C.H. Lai, J.W. Yeh, J.Y. Gan, Appl. Phys. Lett. 92, 052109 (2008)

    Article  ADS  Google Scholar 

  18. L.C. Leu, D.P. Norton, T.J. Anderson, L. McElwee-White, Appl. Phys. Lett. 92, 111917 (2008)

    Article  ADS  Google Scholar 

  19. P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Prog. Mater. Sci. 51, 1032 (2006)

    Article  Google Scholar 

  20. Q. Fu, T. Wagner, Surf. Sci. Rep. 62, 431 (2007)

    Article  ADS  Google Scholar 

  21. F.A. List, A. Goyal, M. Paranthaman, D.P. Norton, E.D. Specht, D.F. Lee, D.M. Kroeger, Physica C 302, 87 (1998)

    Article  ADS  Google Scholar 

  22. M.-A. Nicolet, Thin Solid Films 52, 415 (1978)

    Article  ADS  Google Scholar 

  23. X. Sun, J.S. Reid, E. Kolawa, M.-A. Nicolet, J. Appl. Phys. 81, 656 (1997)

    Article  ADS  Google Scholar 

  24. E. Kolawa, J.S. Chen, J.S. Reid, P.J. Pokela, M.-A. Nicolet, J. Appl. Phys. 70, 1369 (1991)

    Article  ADS  Google Scholar 

  25. D. Fischer, T. Scherg, J.G. Bauer, H.-J. Schulze, C. Wenzel, Microelectron. Eng. 50, 459 (2000)

    Article  Google Scholar 

  26. E. Blanquet, A.M. Dutron, V. Ghetta, C. Bernard, R. Madar, Microelectron. Eng. 37–38, 189 (1997)

    Article  Google Scholar 

  27. J.G. Fleming, E. Roherty-Osmun, P.M. Smith, J.S. Custer, Y.-D. Kim, T. Kacsich, M.-A. Nicolet, C.J. Galewski, Thin Solid Films 320, 10 (1998)

    Article  ADS  Google Scholar 

  28. J.S. Reid, R.Y. Liu, P.M. Smith, R.P. Ruiz, M.-A. Nicolet, Thin Solid Films 262, 218 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Norton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leu, L.C., Norton, D.P., McElwee-White, L. et al. Properties of reactively sputtered W–B–N thin film as a diffusion barrier for Cu metallization on Si. Appl. Phys. A 94, 691–695 (2009). https://doi.org/10.1007/s00339-008-4961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4961-9

PACS

Navigation