Skip to main content

Advertisement

Log in

The design of alternative nonaqueous high power chemistries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In order to address power demands of mobile electronics, engineers have been relegated to the incorporation of energy storage technologies with wide disparities in energy and power performance. This paper will review and present alternative non aqueous chemistries and enabling electroactive materials that have the potential to fill a critical void in the power/energy spectrum and enable the design of new and/or improved devices. Incorporating one of the first uses of inorganic intercalation nanomaterials in energy storage, the asymmetric hybrid technology was developed in order to significantly increase the energy density of the supercapacitor, while maintaining the power and most importantly the robustness. The technology delivers 10–15 Wh/kg at 1000–2000 W/kg for over 450000 full discharge cycles. For certain applications, cycle life is not a key specification but rather high power and energy. New composites were developed to address these needs and were optimized to result in systems with 30–45 Wh/kg at upwards of 3000 to 5000 W/kg,while maintaining excellent low temperature performance and fast recharge capability. The performance of these and other alternative systems are presented relative to the active materials, composition of electrodes and electrolytes, failure modes, characterization, and cell design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nishi, H. Azuma, A. Omaru, U.S. Pat. 4959281 (1990)

  2. Nishino A (1988) Carbon 132:57

    Google Scholar 

  3. Burke A (2000) J. Power Source 91:37

    Article  ADS  Google Scholar 

  4. von Helmholtz H (1853) Ann. Phys. (Leipzig) 89:211

    Article  ADS  Google Scholar 

  5. Reed JS (1988) Introduction to the Principles of Ceramic Processing. Wiley, New York p. 140

    Google Scholar 

  6. Conway BE (1991) J. Electrochem. Soc. 138:1539

    Article  Google Scholar 

  7. Liu K, Anderson M (1996) J. Electrochem. Soc. 143:124

    Article  Google Scholar 

  8. Conway BE (1991) J. Electrochem. Soc. 138:1539

    Article  Google Scholar 

  9. A. Beliakov, Electrochemical Society Proceedings, vol 2002–7, (2002)

  10. I.N. Varakin, A.D. Klementov, S.V. Litvinenko, N.F. Starodubtsev, A.B. Stepanov, in Proc. 11th International Seminar on Double Layer Capacitors, Florida Educational Seminars, Inc. (2001)

  11. D.E. Reisner, in Proc. 9th International Seminar on DLC and Similar Energy Storage Devices, Florida Educational Seminars (1999)

  12. Y.M. Volfkovich, in Proc. 8th International Seminar on DLC and Similar Energy Storage Devices, Florida Educational Seminars (1998)

  13. Laforgue A, Simon P, Fauvarque JF, Sarrau JF, Lailler P (2003) J. Electrochem. Soc. 150:A645

    Article  Google Scholar 

  14. Tarascon JM, Gozdz AS, Schmutz C, Shokoohi F, Warren PC (1996) Solid State Ionics, 86–88:49

    Article  Google Scholar 

  15. G.G. Amatucci, F. Badway, A. Du Pasquier, T. Zheng, 196th Meeting of The Electrochemical Society, Abstract 122, (1999)

  16. Amatucci GG, Badway F, Du Pasquier A, Zheng T (2001) J. Electrochem. Soc. 148:930

    Article  Google Scholar 

  17. Wolfenstine J (1999) J. Power Source 79:111

    Article  ADS  Google Scholar 

  18. Paolone A, Cantelli R, Rousse G, Masquelier C (2003) J. Phys. Condens. Matter 15:457

    Article  ADS  Google Scholar 

  19. Sugiyama J, Tamura T, Yamauchi H (1995) J. Phys. Condens. Matter 7:9755

    Article  ADS  Google Scholar 

  20. Murphy DW, Cava RJ, Zahurak SM, Santoro A (1983) Solid State Ionics 9:–10:413

    Article  Google Scholar 

  21. Peramunage D, Abraham KM (1998) J. Electrochem. Soc. 145:2609

    Article  Google Scholar 

  22. Zaghib K, Simoneau M, Armand M, Hauthier M (1999) J. Power Source 81:300

    Article  ADS  Google Scholar 

  23. Colbow KM, Dahn JR, Haering RR (1989) J. Power Source 26:397

    Article  ADS  Google Scholar 

  24. Brousse T, Fragnaud P, Marchand R, Schleich DM, Bohnke O, West K (1997) J. Power Source 68:412

    Article  ADS  Google Scholar 

  25. Amatucci GG, Pereira N, Zheng T, Plitz I, Tarascon JM (1999) J. Power Source 81–82:39

    Article  ADS  Google Scholar 

  26. Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) J. Power Source 81–82:902

    Article  ADS  Google Scholar 

  27. Amatucci GG, Pereira N, Zheng T, Tarascon J-M (2001) J. Electrochem. Soc. 148:171

    Article  Google Scholar 

  28. Kavan L, Gratzel M (2002) Electrochem. Solid-State Lett. 5:A39

    Article  Google Scholar 

  29. Ohzuku T, Ueda A, Yamamoto N (1995) J. Electrochem. Soc. 142:1431

    Article  Google Scholar 

  30. Du Pasquier A, Plitz I, Gural J, Menocal S, Amatucci GG (2003) J. Power Source 113:62

    Article  ADS  Google Scholar 

  31. Du Pasquier A, Laforgue A, Simon P, Amatucci GG, Fauvarque JF (2002) J. Electrochem. Soc. 149:A302

    Article  Google Scholar 

  32. Du Pasquier A, Laforgue A, Simon P (2004) J. Power Source 125:95

    Article  ADS  Google Scholar 

  33. Du Pasquier A, Plitz I, Gural J, Badway F, Amatucci GG (2004) J. Power Source 136:160

    Article  ADS  Google Scholar 

  34. Zhong Q, Banakdorpour A, Zhang M, Gao Y, Dahn JR (1997) J. Electrochem. Soc. 144:205

    Article  Google Scholar 

  35. Ariyoshi K, Yamamoto S, Ohzuku T (2003) J. Power Source 119:959

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.G. Amatucci.

Additional information

PACS

81.05.2; 81.70; 84.60; 84.60.D

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plitz, I., DuPasquier, A., Badway, F. et al. The design of alternative nonaqueous high power chemistries. Appl. Phys. A 82, 615–626 (2006). https://doi.org/10.1007/s00339-005-3420-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3420-0

Keywords

Navigation