Skip to main content
Log in

The fluence effect in hydrogen-ion cleaving of silicon at the sub-100-nm scale

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The implementation at the sub-100-nm scale of ion cleaving requires ion beams of ∼5 keV/amu or less. The blistering efficiency in 5-keV H-ion-implanted and annealed Si has been found to peak and vanish in a narrow range of ion fluence of (1.5–3.5)×1016 H/cm2. In order to understand this effect, the defect profiles in 5-keV H-irradiated Si were studied by Rutherford backscattering/channelling, while the Si-H bonding configurations during annealing were investigated by Raman scattering spectroscopy. Three types of defects play major roles: the ‘broad-band’ monohydride multivacancy complexes, the fully or partially passivated monovacancy VHn, and H-terminated internal surfaces Si(100):H. Blister absence at high fluence is characterised by the persistence up to 550 °C of the Si(100):H structures, which are blister embryos that failed to coalesce and grow. Radiation-induced stresses and fracture toughening may play roles in inhibiting cleavage at high fluence; however, widening towards the surface of the zone of high H and defect concentration is the likely major factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.K. Das, M. Kaminsky: Adv. Chem. Ser. 158, 112 (1976)

    Google Scholar 

  2. E. Ligeon, A. Guivarc’h: Radiat. Eff. 27, 129 (1976)

    Google Scholar 

  3. W.K. Chu, R.H. Kastl, R.F. Lever, S. Mader, J. Masters: in Ion Implantation in Semiconductors, ed. by F. Chernov, J.A. Borders, D.K. Brice (Plenum, New York 1976) p. 483

  4. M.K. Weldon, V.E. Marsico, Y.J. Chabal, A. Agarwal, D.J. Eagleaham, J. Sapjeta, W.L. Brown, D.C. Jacobson, Y. Caudano, S.B. Christman, E.E. Chaban: J. Vac. Sci. Technol. B 15, 1065 (1997)

    Article  Google Scholar 

  5. J.K.G. Panitz, D.J. Sharp, C.R. Hills: J. Vac. Sci. Technol. A 3, 1 (1985)

    Google Scholar 

  6. M. Bruel: Electron. Lett. 31, 1201 (1995)

    Article  Google Scholar 

  7. M. Bruel: Nucl. Instrum. Methods B 108, 313 (1996)

    Google Scholar 

  8. Q.Y. Tong, T.H. Lee, K. Gutjahr, S. Hopfe, U. Gösele: Appl. Phys. Lett. 70, 1390 (1997)

    Article  Google Scholar 

  9. T. Höchbauer, A. Misra, M. Nastasi, J.W. Mayer: J. Appl. Phys. 89, 5980 (2001)

    Article  Google Scholar 

  10. S.W. Bedell, W.A. Lanford: J. Appl. Phys. 90, 1138 (2001)

    Article  Google Scholar 

  11. For a review, see G.K. Celler, S. Cristoloveanu: J. Appl. Phys. 93, 4955 (2003)

    Article  Google Scholar 

  12. B. Terreault: Surf. Coat. Technol. 156, 13 (2002)

    Article  Google Scholar 

  13. As computed by the binary collision code SRIM; see J.F. Ziegler, J.P. Biersack: www.srim.org

  14. E. Bøgh: Can. J. Phys. 46, 653 (1968)

    Google Scholar 

  15. J.N. Heyman, J.W. Ager III, E.E. Haller, N.M. Johnson, J. Walker, C.M. Doland: Phys. Rev. B 45, 13363 (1992)

    Google Scholar 

  16. Y.J. Chabal, M.K. Weldon, Y. Caudano, B.B. Stefanov, K. Raghavachari: Physica B 273, 152 (1999)

    Google Scholar 

  17. M. Budde, G. Lüpke, E. Chen, X. Zhang, N.H. Tolk, L.C. Feldman, E. Tarhan, A.K. Ramdas, M. Stavola: Phys. Rev. Lett. 87, 145501 (2001)

    Article  Google Scholar 

  18. E.V. Lavrov, J. Weber, L. Huang, B. Bech Nielsen: Phys. Rev. B 64, 035204 (2001)

    Article  Google Scholar 

  19. N. Fukata, T. Ohori, M. Suezawa, H. Takahashi: J. Appl. Phys. 91, 5831 (2002)

    Article  Google Scholar 

  20. T. Matsumoto, A.I. Belogorokhov, L.I. Belogorokhova, Y. Masumoto, E.A. Zhukov: Nanotechnology 11, 340 (2000)

    Article  MATH  Google Scholar 

  21. F.A. Reboredo, M. Ferconi, S.T. Pantelides: Phys. Rev. Lett. 82, 4870 (1999)

    Article  Google Scholar 

  22. O. Moutanabbir, B. Terreault: J. Chem. Phys. 121, 7973 (2004)

    Article  Google Scholar 

  23. Nanotec Electronica, C/Padilla 1, 28006 Madrid, Spain [http://www.nanotec.es]

  24. O. Moutanabbir, A. Giguère, B. Terreault: Appl. Phys. Lett. 84, 3286 (2004)

    Article  Google Scholar 

  25. X. Lu, N.W. Cheung, M.D. Strathman, P.K. Chu, B. Doyle: Appl. Phys. Lett. 71, 1804 (1997)

    Article  Google Scholar 

  26. T. Höchbauer, A. Misra, M. Nastasi, J.W. Mayer: J. Appl. Phys. 92, 2335 (2002)

    Article  Google Scholar 

  27. J.G. Martel, R. St-Jacques, B. Terreault, G. Veilleux: J. Nucl. Mater. 53, 142 (1974)

    Article  Google Scholar 

  28. B. Terreault: J. Nucl. Mater. 93–94, 707 (1980)

  29. W. Jäger, J. Roth: J. Nucl. Mater. 93–94, 756 (1980)

    Google Scholar 

  30. J.G. Swadener, M. Nastasi: Nucl. Instrum. Methods B 206, 937 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Moutanabbir.

Additional information

PACS

61.82.Fk; 82.80.Gk; 61.85.+p

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moutanabbir, O., Terreault, B., Chicoine, M. et al. The fluence effect in hydrogen-ion cleaving of silicon at the sub-100-nm scale. Appl. Phys. A 80, 1455–1462 (2005). https://doi.org/10.1007/s00339-004-3094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3094-z

Keywords

Navigation