Skip to main content
Log in

Microscopic mechanisms of short pulse laser spallation of molecular solids

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mechanisms of photomechanical spallation are investigated in a large-scale MD simulation of laser interaction with a molecular target performed in an irradiation regime of inertial stress confinement. The relaxation of laser-induced thermoelastic stresses is found to be responsible for the nucleation, growth, and coalescence of voids in a broad sub-surface region of the irradiated target. The depth of the region subjected to void evolution is defined by the competition between the evolving tensile stresses and thermal softening of the material due to the laser heating. The initial void volume distribution obtained in the simulation of laser spallation can be well described by a power law. A similar volume distribution is obtained in a series of simulations of uniaxial expansion of the same molecular system performed at a strain rate and temperature realized in the irradiated target. Spatial and time evolution of the laser-induced pressure predicted in the MD simulation of laser spallation is related to the results of an integration of a thermoelastic wave equation. The scope of applicability of the continuum calculations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Paltauf, P.E. Dyer: Chem. Rev. 103, 487 (2003)

    Article  Google Scholar 

  2. R. Cramer, R.F. Haglund Jr., F. Hillenkamp: Int. J. Mass Spectrom. Ion Processes 169/170, 51 (1997)

    Google Scholar 

  3. R.L. Webb, J.T. Dickinson, G.J. Exarhos: Appl. Spectrosc. 51, 707 (1997)

    Article  ADS  Google Scholar 

  4. D. Kim, M. Ye, C.P. Grigoropoulos: Appl. Phys. A 67, 169 (1998)

    Article  ADS  Google Scholar 

  5. A. Vogel, V. Venugopalan: Chem. Rev. 103, 321 (2003)

    Article  Google Scholar 

  6. S.L. Jacques, A.A. Oraevsky, R. Thompson, B.S. Gerstman: Proc. SPIE 2134A, 54 (1994)

    ADS  Google Scholar 

  7. G. Paltauf, H. Schmidt-Kloiber: Appl. Phys. A 68, 525 (1999)

    Article  ADS  Google Scholar 

  8. I. Itzkan, D. Albagli, M.L. Dark, L.T. Perelman, C. Von Rosenberg, M.S. Feld : Proc. Natl. Acad. Sci. USA 92, 1960 (1995)

    Article  ADS  Google Scholar 

  9. X. Wang, X. Xu: Appl. Phys. A 73, 107 (2001)

    Article  ADS  Google Scholar 

  10. T. Antoun, L. Seaman, M.E. Glinsky: SPIE 2391, 413 (1995)

    ADS  Google Scholar 

  11. M. Strauss, Y. Kaufman, M. Sapir, P.A. Amendt, R.A. London, M.E. Glinsky : J. Appl. Phys. 91, 4720 (2002)

    Article  ADS  Google Scholar 

  12. L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman: Chem. Rev. 103, 321 (2003)

    Article  Google Scholar 

  13. L.V. Zhigilei, Y.G. Yingling, T.E. Itina, T.A. Schoolcraft, B.J. Garrison: Int. J. Mass Spectrom. 226, 85 (2003)

    Article  ADS  Google Scholar 

  14. L.V. Zhigilei, B.J. Garrison: J. Appl. Phys. 88, 1281 (2000)

    Article  ADS  Google Scholar 

  15. A.G. Zhidkov, L.V. Zhigilei, A. Sasaki, T. Tajima: Appl. Phys. A 73, 741 (2001)

    Article  ADS  Google Scholar 

  16. D.S. Ivanov, L.V. Zhigilei: Phys. Rev. B 68, 064 114 (2003); ibid, Phys. Rev. Lett. 91, 105 701 (2003)

    Google Scholar 

  17. E. Leveugle, D.S. Ivanov, L.V. Zhigilei: Appl. Phys. A, in press

  18. I.S. Bitensky, E.S. Parilis: Nucl. Instrum. Methods Phys. Res. B 21, 26 (1987)

    Article  ADS  Google Scholar 

  19. L.V. Zhigilei: Appl. Phys. A 76, 339 (2003)

    Article  ADS  Google Scholar 

  20. A. Strachan, T. Çagin, W.A. Goddard III: Phys. Rev. B 63, 060 103 (2001)

    Google Scholar 

  21. A.A. Oraevsky, R. Esenaliev, S.L. Jacques, F.K. Tittel: SPIE Proc. Series 2391, 300 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.V. Zhigilei.

Additional information

PACS

79.20.Ds; 61.80.Az; 02.70.Ns; 83.60.Uv

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leveugle, E., Zhigilei, L. Microscopic mechanisms of short pulse laser spallation of molecular solids. Appl. Phys. A 79, 753–756 (2004). https://doi.org/10.1007/s00339-004-2609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2609-y

Keywords

Navigation