Skip to main content
Log in

Contrasting patterns of connectivity among endemic and widespread fire coral species (Millepora spp.) in the tropical Southwestern Atlantic

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Fire corals are the only branching corals in the South Atlantic and provide an important ecological role as habitat-builders in the region. With three endemic species (Millepora brazilensis, M. nitida and M. laboreli) and one amphi-Atlantic species (M. alcicornis), fire coral diversity in the Brazilian Province rivals that of the Caribbean Province. Phylogenetic relationships and patterns of population genetic structure and diversity were investigated in all four fire coral species occurring in the Brazilian Province to understand patterns of speciation and biogeography in the genus. A total of 273 colonies from the four species were collected from 17 locations spanning their geographic ranges. Sequences from the 16S ribosomal DNA (rDNA) were used to evaluate phylogenetic relationships. Patterns in genetic diversity and connectivity were inferred by measures of molecular diversity, analyses of molecular variance, pairwise differentiation, and by spatial analyses of molecular variance. Morphometrics of the endemic species M. braziliensis and M. nitida were evaluated by discriminant function analysis; macro-morphological characters were not sufficient to distinguish the two species. Genetic analyses showed that, although they are closely related, each species forms a well-supported clade. Furthermore, the endemic species characterized a distinct biogeographic barrier: M. braziliensis is restricted to the north of the São Francisco River, whereas M. nitida occurs only to the south. Millepora laboreli is restricted to a single location and has low genetic diversity. In contrast, the amphi-Atlantic species M. alcicornis shows high genetic connectivity within the Brazilian Province, and within the Caribbean Province (including Bermuda), despite low levels of gene flow between these populations and across the tropical Atlantic. These patterns reflect the importance of the Amazon–Orinoco Plume and the Mid-Atlantic Barrier as biogeographic barriers, and suggest that, while M. alcicornis is capable of long-distance dispersal, the three endemics have restricted ranges and more limited dispersal capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amaral FMD, Broadhurst MK, Cairns SD, Schlenz E (2002) Skeletal morphometry of Millepora occurring in Brazil, including a previously undescribed species. Proceedings of the Biological Society of Washington 115:681–695

    Google Scholar 

  • Amaral FMD, Steiner AQ, Broadhurst MK, Cairns SD (2008) An overview of the shallow-water hydroids from Brazil (Hydrozoa:Cnidaria), including the description of a new species. Zootaxa 1930:56–68

    Google Scholar 

  • Arrigoni R, Kitano YF, Stolarski J, Hoeksema BW, Fukami H, Stefani F, Galli P, Montano S, Castoldi E, Benzoni F (2014) A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zool Scr 43:661–688

    Article  Google Scholar 

  • Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54:1590–1605

    Article  CAS  PubMed  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390

    Article  CAS  PubMed  Google Scholar 

  • Benzoni F, Arrigoni R, Stefani F, Reijnen BT, Montano S, Hoeksema BW (2012) Phylogenetic position and taxonomy of Cycloseris explanulata and C. wellsi (Scleractinia: Fungiidae): lost mushroom corals find their way home. Contributions to Zoology 81:125–146

    Google Scholar 

  • Bertelsen E, Ussing H (1936) Marine tropical animals carried to the Copenhagen Sydhavn on a ship from the Bermudas. Vidensk Medd Dansk Naturhist Foren Kobenhavn 100:237–245

    Google Scholar 

  • Boekschoten GJ, Borel Best M (1988) Fossil and recent shallow water corals from the Atlantic islands off Western Africa. Zoologische Mededeelingen 62:98–112

    Google Scholar 

  • Boschma H (1948) The species problem in Millepora. Zoologische Verhandelingen 1:1–115

    Google Scholar 

  • Boschma H (1962) On Milleporine corals from Brazil. Proc K Ned Akad Wet C 65:302–313

    Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourmaud CA-F, Leung JKL, Bollard S, Gravier-Bonnet N (2013) Mass spawning events, seasonality and reproductive features in milleporids (Cnidaria, Hydrozoa) from Reunion Island. Mar Ecol 34:14–24

    Article  Google Scholar 

  • Brasil (2014) Ministério do Meio Ambiente, Portaria n° 445, de 17 de dezembro de 2014. Fauna brasileira ameaçada de extinção. Diário Oficial da União 18 dez 2014; Seção 1

  • Brazeau DA, Sammarco PW, Gleason DF (2005) A multi-locus genetic assignment technique to assess sources of Agaricia agaricites larvae on coral reefs. Mar Biol 147:1141–1148

    Article  CAS  Google Scholar 

  • Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39:12–30

    Article  Google Scholar 

  • Budd AF, Stolarski J (2009) Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae. Acta Zool 90:142–165

    Article  Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529

    Article  Google Scholar 

  • Cabezas MP, Navarro-Barranco C, Ros M, Guerra-García JM (2013) Long-distance dispersal, low connectivity and molecular evidence of a new cryptic species in the obligate rafter Caprella andreae Mayer, 1890 (Crustacea: Amphipoda: Caprellidae). Helgol Mar Res 67:483–497

    Article  Google Scholar 

  • Caires RA, Figueiredo JL, Bernardes RÁ (2008) Registros novos e adicionais de teleósteos marinhos na costa brasileira. Pap Avulsos Zool 48:213–225

    Google Scholar 

  • Capel KCC, Segal B, Bertuol P, Lindner A (2012) Corallith beds at the edge of the tropical South Atlantic. Coral Reefs 31:75

    Article  Google Scholar 

  • Carvalho Filho A, Ferreira CEL (2013) A new species of dwarf sea bass, genus Serranus (Serranidae: Actinopterygii), from the southwestern Atlantic Ocean. Neotrop Ichthyol 11:809–814

    Article  Google Scholar 

  • Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sci 69:357–371

    Google Scholar 

  • Clemente S, Rodríguez A, Brito A, Ramos A, Monterroso Ó, Hernández JC (2011) On the occurrence of the hydrocoral Millepora (Hydrozoa: Milleporidae) in the subtropical eastern Atlantic (Canary Islands): is the colonization related to climatic events? Coral Reefs 30:237–240

    Article  Google Scholar 

  • Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol 114:317–325

    Article  CAS  Google Scholar 

  • Coni EOC, Ferreira CM, de Moura RL, Meirelles PM, Kaufman L, Francini-Filho RB (2013) An evaluation of the use of branching fire-corals (Millepora spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environ Biol Fishes 96:45–55

    Article  Google Scholar 

  • Connell JH (1973) Population ecology of reef building corals. In: Jones OA, Endean R (eds) Biology and geology of coral reefs. Academic Press, New York, pp 204–205

    Google Scholar 

  • Connolly SR, Baird AH (2010) Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology 91:3572–3583

    Article  PubMed  Google Scholar 

  • Cordeiro RTS, Kitahara MV, Amaral FMD (2012) New records and range extensions of azooxanthellate scleractinians (Cnidaria: Anthozoa) from Brazil. Mar Biodivers Rec 5:e35

    Article  Google Scholar 

  • Cordeiro RTS, Neves BM, Rosa-Filho JS, Pérez CD (2015) Mesophotic coral ecosystems occur offshore and north of the Amazon River. Bull Mar Sci 91:491–510

    Article  Google Scholar 

  • Cunningham CW, Buss LW (1993) Molecular evidence for multiple episodes of paedomorphosis in the Family Hydractiniidae. Biochem Syst Ecol 21:57–69

    Article  CAS  Google Scholar 

  • Cunningham CW, Buss LW, Anderson C (1991) Molecular and geologic evidence of shared history between hermit crabs and the symbiotic genus Hydractinia. Evolution 45:1301–1316

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Weerdt WH (1984) Taxonomic characters in Caribbean Millepora species (Hydrozoa, Coelenterata). Bijdragen tot de Dierkunde 54:243–262

    Google Scholar 

  • DiBattista JD, Berumen ML, Gaither MR, Rocha LA, Eble JA, Choat JH, Craig MT, Skillings DJ, Bowen BW (2013) After continents divide: comparative phylogeography of reef fishes from the Red Sea and Indian Ocean. J Biogeogr 40:1170–1181

    Article  Google Scholar 

  • Dubé CE, Boissin E, Planes S (2016) Overgrowth of living scleractinian corals by the hydrocoral Millepora platyphylla in Moorea, French Polynesia. Mar Biodivers 46:329–330

    Article  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Edmunds PJ (1999) The role of colony morphology and substratum inclination in the success of Millepora alcicornis on shallow coral reefs. Coral Reefs 18:133–140

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Foster NL, Paris CB, Kool JT, Baums IB, Stevens JR, Sanchez JA, Bastidas C, Agudelo C, Bush P, Day O, Ferrari R, Gonzalez P, Gore S, Guppy R, McCartney MA, McCoy C, Mendes J, Srinivasan A, Steiner S, Vermeij MJ, Weil E, Mumby PJ (2012) Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. Mol Ecol 21:1143–1157

    Article  PubMed  Google Scholar 

  • Fukami H, Budd AF, Paulay G, Sole A, Chen CA, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835

    Article  CAS  PubMed  Google Scholar 

  • Gasparini JL, Joyeux J-C, Floeter SR (2003) Sparisoma tuiupiranga, a new species of parrotfish (Perciformes: Labroidei: Scaridae) from Brazil, with comments on the evolution of the genus. Zootaxa 384:1–14

    Article  Google Scholar 

  • Gittenberger A, Reijnen BT, Hoeksema BW (2011) A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits. Contributions to Zoology 80:107–132

    Google Scholar 

  • Goodbody-Gringley G, Woollacott RM, Giribet G (2012) Population structure and connectivity in the Atlantic scleractinian coral Montastraea cavernosa (Linnaeus, 1767). Mar Ecol 33:32–48

    Article  CAS  Google Scholar 

  • Goodbody-Gringley G, Vollmer SV, Woollacott RM, Giribet G (2010) Limited gene flow in the brooding coral Favia fragum (Esper, 1797). Mar Biol 157:2591–2602

    Article  Google Scholar 

  • Govindarajan AF, Halanych KM, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222

    Article  CAS  Google Scholar 

  • Guimarães RZP, Bacellar ACLH (2002) Review of the Brazilian species of Paraclinus (Teleostei: Labrisomidae), with descriptions of two new species and revalidation of Paraclinus rubicundus (Starks). Copeia 2002:419–427

    Article  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hoeksema BW (2012) Extreme morphological plasticity enables a free mode of life in Favia gravida at Ascension Island (South Atlantic). Mar Biodivers 42:289–295

    Article  Google Scholar 

  • Hoeksema BW, Roos PJ, Cadée GC (2012) Trans-Atlantic rafting by the brooding reef coral Favia fragum on man-made flotsam. Mar Ecol Prog Ser 445:209–218

    Article  Google Scholar 

  • Hoeksema BW, Nunes FLD, Lindner A, de Souza JN (2014) Millepora alcicornis (Hydrozoa: Capitata) at Ascension Island: confirmed identity based on morphological and molecular analyses. J Mar Biol Assoc UK. doi:10.1017/S0025315414001283

    Google Scholar 

  • Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23:237–240

    Article  Google Scholar 

  • Hu C, Montgomery ET, Schmitt RW, Muller-Karger FE (2004) The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep Sea Res Part 2 Top Stud Oceanogr 51:1151–1171

    Article  CAS  Google Scholar 

  • Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND, Budd AF (2014a) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 171:277–355

    Article  Google Scholar 

  • Huang D, Benzoni F, Arrigoni R, Baird AH, Berumen ML, Bouwmeester J, Chou LM, Fukami H, Licuanan WY, Lovell ER, Meier R, Todd PA, Budd AF (2014b) Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zool Scr 43:531–548

    Article  Google Scholar 

  • Jokiel PL (1989) Rafting of reef corals and other organisms at Kwajalein Atoll. Mar Biol 101:483–493

    Article  Google Scholar 

  • Kitahara MV (2007) Species richness and distribution of azooxanthellate Scleractinia in Brazil. Bull Mar Sci 81:497–518

    Google Scholar 

  • Laborel J (1969a) Les peuplements de Madréporaires des cotês tropicales du Brésil. Annales de l´Université D’Abidjan Série E II:1–261

    Google Scholar 

  • Laborel J (1969b) Madréporaires et Hydrocoralliaires récifaux des côtes brésiliennes: systématique, écologie, répartition verticale et géographique. Resultats Scientifiques des Campagnes de la Calypso 9:171–229

    Google Scholar 

  • Laborel J (1974) West African reef corals: an hypothesis on their origin. Proc 2nd Int Coral Reef Symp 1:425–443

    Google Scholar 

  • Lang J (1973) Interspecific aggression by scleractinian corals. 2. Why the race is not only to the swift. Bull Mar Sci 23:260–279

    Google Scholar 

  • Leal ICS, Pereira PHC, De Araujo ME (2013) Coral reef fish association and behaviour on the fire coral Millepora spp. in north-east Brazil. J Mar Biol Assoc UK 93:1703–1711

    Article  Google Scholar 

  • Leal ICS, de Araújo ME, da Cunha SR, Pereira PHC (2015) The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar Environ Res 108:45–54

    Article  CAS  PubMed  Google Scholar 

  • Leão ZMAN, Kikuchi RKP, Testa V (2003) Corals and coral reefs of Brazil. In: Cortés J (ed) Latin American coral reefs. Elsevier, Amsterdam, pp 9–52

    Chapter  Google Scholar 

  • Lewis JB (1989) The ecology of Millepora—a review. Coral Reefs 8:99–107

    Article  Google Scholar 

  • Lewis JB (1991) The ampullae and medusae of the calcareous hydrozoan Millepora complanata. Hydrobiologia 216(217):165–169

    Article  Google Scholar 

  • Lewis JB (2006) Biology and ecology of the hydrocoral Millepora on coral reefs. Adv Mar Biol 50:1–55

    Article  PubMed  Google Scholar 

  • Lindner A, Cairns SD, Cunningham CW (2008) From offshore to onshore: multiple origins of shallow-water corals from deep-sea ancestors. PLoS One 3:e2429

    Article  PubMed  PubMed Central  Google Scholar 

  • López C, Clemente S, Almeida C, Brito A, Hernández M (2015) A genetic approach to the origin of Millepora sp. in the eastern Atlantic. Coral Reefs 34:631–638

    Article  Google Scholar 

  • López-Gappa J, Liuzzi MG (2016) High density of the alien bryozoan Fenestrulina delicia in the fouling assemblage of a South American harbour (Argentina). Mar Biodivers 46:509–513

    Article  Google Scholar 

  • Luiz OJ, Madin JS, Robertson DR, Rocha LA, Wirtz P, Floeter SR (2012) Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc R Soc Lond B Biol Sci 279:1033–1040

    Article  Google Scholar 

  • Mayer AG (1910) Medusae of the world. Hydromedusae, vols. I & II. Scyphomedusae, vol III. Carnegie Institution, Washington

  • Miller KJ, Ayre DJ (2008) Population structure is not a simple function of reproductive mode and larval type: insights from tropical corals. J Anim Ecol 77:713–724

    Article  PubMed  Google Scholar 

  • Moura CJ, Cunha MR, Porteiro FM, Rogers AD (2011) The use of the DNA barcode gene 16S mRNA for the clarification of taxonomic problems within the family Sertulariidae (Cnidaria, Hydrozoa). Zool Scr 40:520–537

    Article  Google Scholar 

  • Moura CJ, Cunha MR, Porteiro FM, Rogers AD (2012) A molecular phylogenetic appraisal of the systematics of the Aglaopheniidae (Cnidaria: Hydrozoa, Leptothecata) from the north-east Atlantic and west Mediterranean. Zool J Linn Soc 164:717–727

    Article  Google Scholar 

  • Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS, Mahiques MM et al (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2:e1501252

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawrocki AM, Schuchert P, Cartwright P (2010) Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae. Zool Scr 39:290–304

    Article  Google Scholar 

  • Neves E, Johnsson R (2009) Taxonomic revision of the southwestern Atlantic Madracis and the description of Madracis fragilis n. sp. (Scleractinia: Pocilloporidae), a new coral species from Brazil. Sci Mar 73:739–746

    Article  Google Scholar 

  • Neves EG, Johnsson R, Sampaio CLS, Pichon M (2006) The occurrence of Scolymia cubensis in Brazil: revising the problem of the Caribbean solitary mussids. Zootaxa 1366:45–54

    Google Scholar 

  • Neves EG, Andrade SCS, Silveira FL, Solferini VN (2008) Genetic variation and population structuring in two brooding coral species (Siderastrea stellata and Siderastrea radians) from Brazil. Genetica 132:243–254

    Article  PubMed  Google Scholar 

  • Neves EG, Silveira FL, Pichon M, Johnsson R (2010) Cnidaria, Scleractinia, Siderastreidae, Siderastrea siderea (Ellis and Solander, 1786): Hartt Expedition and the first record of a Caribbean siderastreid in tropical Southwestern Atlantic. Check List 6:505–510

    Article  Google Scholar 

  • Nunes F, Norris RD, Knowlton N (2009) Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral. Mol Ecol 18:4283–4297

    Article  CAS  PubMed  Google Scholar 

  • Nunes FLD, Norris RD, Knowlton N (2011) Long distance dispersal and connectivity in amphi-Atlantic corals at regional and basin scales. PLoS One 6:e22298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes F, Fukami H, Vollmer SV, Norris RD, Knowlton N (2008) Re-evaluation of the systematics of the endemic corals of Brazil by molecular data. Coral Reefs 27:423–432

    Article  Google Scholar 

  • Pereira PHC, Leal ICS, de Araújo ME, Souza AT (2012) Feeding association between reef fishes and the fire coral Millepora spp. (Cnidaria: Hydrozoa). Mar Biodivers Rec 5:e42

    Article  Google Scholar 

  • Picciani N, de Lossio e Seiblitz IG, de Paiva PC, Castro CB, Zilberberg C (2016) Geographic patterns of Symbiodinium diversity associated with the coral Mussismilia hispida (Cnidaria, Scleractinia) correlate with major reef regions in the Southwestern Atlantic Ocean. Mar Biol 163:236

    Article  Google Scholar 

  • Pinzón JH, Weil E (2011) Cryptic species within the Atlantic-Caribbean genus Meandrina (Scleractinia): a multidisciplinary approach and description of the new species Meandrina jacksoni. Bull Mar Sci 87:823–853

    Article  Google Scholar 

  • Pires DO (2007) The azooxanthellate coral fauna of Brazil. In: George RY, Cairns SD (eds) Conservation and adaptative management of seamount and deep-sea coral ecosystems. Rosentiel School of Marine and Atmospheric Science, University of Miami, Miami, pp 265–272

    Google Scholar 

  • Razak TB, Hoeksema BW (2003) The hydrocoral genus Millepora (Hydrozoa: Capitata: Milleporidae) in Indonesia. Zoologische Verhandelingen 345:313–336

    Google Scholar 

  • Ros M, Guerra-García JM, Hoffman R (2016) First record of the exotic caprellid amphipod Paracaprella pusilla Mayer, 1890 in the eastern Mediterranean. Mar Biodivers 46:281–284

    Article  Google Scholar 

  • Ruiz-Ramos DV, Weil E, Schizas NV (2014) Morphological and genetic evaluation of the hydrocoral Millepora species complex in the Caribbean. Zool Stud 53:4

    Article  Google Scholar 

  • Serrano XM, Baums IB, Smith TB, Jones RJ, Shearer TL, Baker AC (2016) Long-distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci Rep 6:21619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano X, Baums IB, O’Reilly K, Smith TB, Jones RJ, Shearer TL, Nunes FLD, Baker AC (2014) Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol 23:4226–4240

    Article  CAS  PubMed  Google Scholar 

  • Severance EG, Karl SA (2006) Contrasting population genetic structures of sympatric, mass-spawning Caribbean corals. Mar Biol 150:57–68

    Article  Google Scholar 

  • Soong K, Lang JC (1992) Reproductive integration in reef corals. Biol Bull 183:418–431

    Article  Google Scholar 

  • Soong K, Cho LC (1998) Synchronized release of medusae from three species of hydrozoan fire corals. Coral Reefs 17:145–154

    Article  Google Scholar 

  • Vermeij MJA, Fogarty ND, Miller MW (2006) Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Mar Ecol Prog Ser 310:119–128

    Article  Google Scholar 

  • Verrill AE (1868) Notice of the corals and echinoderms collected by Prof. C. F. Hartt, at the Abrolhos Reefs, Province of Bahia, Brazil, 1867. Transactions of the Connecticut Academy of Arts and Sciences 1:351–364

    Google Scholar 

  • Vollmer SV, Palumbi SR (2007) Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J Hered 98:40–50

    Article  CAS  PubMed  Google Scholar 

  • Wahle CM (1980) Detection, pursuit, and overgrowth of tropical gorgonians by milleporid hydrocorals: Perseus and Medusa revisited. Science 209:689–691

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank SISBIOTA-Mar Network (CNPq 563276/2010-0, FAPESC 6308/2011-8) and São Paulo Research Foundation (FAPESP 2006/02960-8, 2006/05821-9, 2006/60327-0) for funding. For assistance in the field and/or for providing samples, we thank Projeto Coral Vivo, John Starmer, Carlos Eduardo L. Ferreira, Peter Wirtz, Alberto Brito, Ana Flora S. de Oliveira, Kátia C. C. Capel, Fábio Negrão, Kyllderes Lima, Ralf Cordeiro, Fernanda D. Amaral, Leandro M. Vieira, Monica Dorigo Correia, Hilda Helena Sovierzoski, Douglas Burgos, Anaide W. Aued, Guilherme O. Longo, João L. R. Gasparini, Mariana Teschima, Barbara S. Ramos and Sergio R. Floeter. We are also grateful to Laura Branco, Edmundo Grisard and Luisa F. Dueñas for laboratory assistance, Andreia Carina Turchetto Zolet and Malva I. M. Hernandez for help in analysis, Antonio M. Solé-Cava for the use of the ABI 3500 sequencer, and Emiliano N. Calderon and Luiz Rocha for providing images. Work by FLDN was supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the program “Investissements d’Avenir,” and by a grant from the Regional Council of Brittany. JAS acknowledges the Minister of Environment, Household and Territorial Development (PNN) for collecting permits DTCA-LCR002(2004) and DTC-CR-T36(03-09), and contract No. 007 (634, 2007). Sampling in Florida was done under permit SAL-12-1182B-SRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlia N. de Souza.

Additional information

Communicated by Ecology Editor Dr. Michael Berumen

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, J.N., Nunes, F.L.D., Zilberberg, C. et al. Contrasting patterns of connectivity among endemic and widespread fire coral species (Millepora spp.) in the tropical Southwestern Atlantic. Coral Reefs 36, 701–716 (2017). https://doi.org/10.1007/s00338-017-1562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1562-0

Keywords

Navigation