Skip to main content

Advertisement

Log in

Contrasting clonal structure among Pocillopora (Scleractinia) communities at two environmentally distinct sites in the Gulf of California

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The contributions of sexual versus asexual reproduction are thought to play an important role in the abundance and ecological success of corals, especially in marginal habitats. Pocillopora corals are distributed throughout the Indo-Pacific and dominate shallow hard-bottom communities in the eastern Pacific where broad seasonal fluctuations in temperature and water turbidity create suboptimal conditions for reef community development. Previous work had revealed three genetic clades in the eastern Pacific that show little correspondence with colony morphology; the broad distribution of type 1 extends into the subtropical southern Gulf of California. Here we examine genetic and clonal structure of two type 1 communities separated by 10 km with microsatellite data. Samples were collected randomly in six 10 m radius circular plots (20 colonies per plot, 3 plots per site). Sites differed in their relative clonality because clonemates (ramets) from a single clone (genet) dominated a large portion (90.9 m long) of the protected leeward side of Gaviota Island (Number of genets/Number of samples = 0.35; observed Genotypic diversity/expected Genotypic diversity = 0.087), while an exposed community at the entrance to La Paz Bay, Punta Galeras, exhibited high genotypic diversity (N g /N = 0.85; G o /G e  = 0.714). Gene flow was unrestricted between sites indicating these communities comprised a single population. The relative proportion of asexual colonies found between community aggregations of Pocillopora in the Gulf of California differed significantly and suggests factors at local, not regional, scales affect these patterns. The possibility that heterogeneity in clonal structure is common throughout the eastern Pacific and across the west Indo-Pacific requires further study. Finally, since morphological variation in Pocillopora has been underappreciated and is in need of taxonomic revision, the use of a consistent field-sampling protocol and high-resolution makers will advance ecological research and aid in the conservation of these corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Adjeroud M, Tsuchiya M (1999) Genetic variation and clonal structure in the scleractinian coral Pocillopora damicornis in the Ryukyu Archipelago, southern Japan. Mar Biol 134:753–760

    Article  Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Arnaud-Haond S, Alberto F, Teixeira S, Procaccini G, Serrao E, Duarte C (2005) Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. J Hered 96:434

    Article  PubMed  CAS  Google Scholar 

  • Arnaud-Haond S, Duarte C, Alberto F, Serrao E (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    Article  PubMed  CAS  Google Scholar 

  • Ayre DJ (1984) The effects of sexual and asexual reproduction on geographic variation in the sea anemone Actinia tenebrosa. Oecologia 62:222–229

    Article  Google Scholar 

  • Ayre DJ, Miller KJ (2004) Where do clonal coral larvae go? Adult genotypic diversity conflicts with reproductive effort in the brooding coral Pocillopora damicornis. Mar Ecol Prog Ser 277:95–105

    Article  Google Scholar 

  • Ayre DJ, Hughes TP, Standish RJ (1997) Genetic differentiation, reproductive mode, and gene flow in the brooding coral Pocillopora damicornis along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 159:175–187

    Article  Google Scholar 

  • Baird A, Guest J, Willis B (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annual Review of Ecology, Evolution and Systematics 40:552–571

    Article  Google Scholar 

  • Baums IB (2008) A restoration genetics guide for coral reef conservation. Mol Ecol 17:2796–2811

    Article  PubMed  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2006) Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecol Monogr 76:503–519

    Article  Google Scholar 

  • Benzie JAH, Haskell A, Lehman H (1995) Variation in the genetic composition of coral (Pocillopora damicornis and Acropora palifera) populations from different reef habitats. Mar Biol 121:731–739

    Article  Google Scholar 

  • Birkeland C (1977) The importance of rate biomass accumulation on successional stages of benthic communities survival of coral recruits. Proc 3rd Int Coral Reef Symp 1:15–21

  • Brown J (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279

    Article  Google Scholar 

  • Budd A, Romano S, Smith N, Barbeitos M (2010) Rethinking the phylogeny of scleractinian corals: A review of morphological and molecular data. Intgr Comp Biol 50:411–427

    Article  Google Scholar 

  • Chávez-Romo HE, Reyes-Bonilla H (2007) Reproducción sexual del coral Pocillopora damicornis al sur del Golfo de California, México. Cienc Mar 33:495–501

  • Chávez-Romo HE, Correa-Sandoval F, Paz-García D, Reyes-Bonilla H, López-Pérez RA, Medina-Rosas P, Hernández-Cortés MP (2009) Genetic structure of the scleractinian coral, Pocillopora damicornis, from the Mexican Pacific. Proc 11th Int Coral Reef Symp 1:429–433

    Google Scholar 

  • Combosch D, Vollmer S (2011) Population genetics of an ecosystem-defining reef coral Pocillopora damicornis in the Tropical Eastern Pacific. PLoS ONE 6(8):e21200

    Article  PubMed  CAS  Google Scholar 

  • Cortes J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16:S39–S46

    Article  Google Scholar 

  • Crow J (1992) An advantage of sexual reproduction in a rapidly changing environment. J Hered 83:169–173

    PubMed  CAS  Google Scholar 

  • David P, Pujol B, Viard F, Castella V, Goudet J (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487

    Article  PubMed  CAS  Google Scholar 

  • Delmotte F, Leterme N, Gauthier JP, Rispe C, Simon JC (2002) Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol Ecol 711–723

  • Dorken ME, Eckert C (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350

    Article  Google Scholar 

  • Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones S, Thiere T, Wilson A (2009) Geneious v4.8, Available from http://www.geneious.com/

  • Earl DA (2009) Structure Harvester v0.3, website: http://users.soe.ucsc.edu/~dearl/software/struct_harvest/

  • Eckert C (2002) The loss of sex in clonal plants. Evol Ecol 15:501–520

    Article  Google Scholar 

  • Eckert C, Samis K, Lougheed S (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Edinger E, Risk MJ (1995) Preferential survivorship of brooding corals in a regional extinction. Paleobiology 21(2):200–219

    Google Scholar 

  • Flot J, Magalon H, Cruaud C, Couloux A, Tillier S (2008) Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. Comptes Rendus Biologies 331:239–247

    Article  PubMed  Google Scholar 

  • Flot J-F, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372

    Article  PubMed  Google Scholar 

  • Gaston KJ (2009) Geographic range limits: achieving synthesis. Proc R Soc B 276:1395–1406

    Article  PubMed  Google Scholar 

  • Glynn PW (1976) Some physical and biological determinant of coral community structure in the Eastern Pacific. Ecol Monogr 46:431–456

    Article  Google Scholar 

  • Glynn PW, Gassman N, Eakin C, Cortes J, Smith DB, Guzman H (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador). Mar Biol 109:355–369

    Article  Google Scholar 

  • Halkett F, Simon J, Balloux F (2005) Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol Evol 20:194–201

    Article  PubMed  Google Scholar 

  • Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: An ecosystem in transition. Springer, London, pp 59–85

    Chapter  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Coral reefs Ecosystems of the world 25. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Hernández L, Balart EF, Reyes-Bonilla H (2009a) Checklist of reef decapod crustaceans (Crustacea: Decapoda) in the southern Gulf of California, México. Zootaxa 2119:39–50

    Google Scholar 

  • Hernández L, Balart EF, Reyes-Bonilla H (2009b) Effect of hurricane John (2006) on the invertebrates associated with corals in Bahía de La Paz, Gulf of California. Proc 11th Int Coral Reef Symp: 301–304

  • Hernández L, Reyes-Bonilla H, Balart EF (2010) Efecto del blanqueamiento del coral por baja temperatura en los crustáceos decápodos asociados a arrecifes del suroeste del golfo de California. Revista Mexicana de Biodiversidad: 1–7

  • Highsmith R (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207–226

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten H, Steneck, Greenfield P, Gomez E, C. Harvell CD, Sale P, Edwards A, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury B, Dubi A, Hatziolos M (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Google Scholar 

  • Honnay O, Bossuyt B (2005) Prolonged clonal growth: escape route or route to extinction? Oikos 108:427–432

    Article  Google Scholar 

  • Hurlbert S (1971) Nonconcept of species diversity—critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Jackson JBC (1986) Modes of dispersal of clonal benthic invertebrates: consequences for species’ distributions and genetic structure of local populations. Bull Mar Sci 39:588–606

    Google Scholar 

  • Jakobsson M, Rosenberg N (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Illescaz AR (1996) Análisis de procesos barotrópicos y baroclínicos en la Bahía de La Paz. ICML-UNAM, B. C. S. 168

    Google Scholar 

  • Kapralov M (2004) Genotypic variation in populations of the clonal plant Saxifraga cernua in the Central and Peripheral Regions of the species range. Russ J Ecol 35:413–416

    Article  Google Scholar 

  • Kerr AM, Baird AH, Hughes TP (2011) Correlated evolution of sex and reproductive mode in corals (Anthozoa: Scleractinia). Proc R Soc B 278:75–81

    Article  PubMed  Google Scholar 

  • Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci USA 96:5419–5425

    Article  Google Scholar 

  • LaJeunesse TC, Low WKW, von Woesik R, Hoegh-Guldbery O, Schmidt GW, Fitt WR (2003) Low symbiont diversity in southern Great Barrier Reef corals relative to those in the Caribbean. Limnol Oceangr 48:2046–2054

    Article  Google Scholar 

  • Magalon H, Adjeroud M, Vauille M (2005) Patterns of genetic variation do not correlate with geographical distance in the reef-building coral Pocillopora meandrina in the south Pacific. Mol Ecol 14:1861–1868

    Article  PubMed  CAS  Google Scholar 

  • Marsh L (1993) The occurrence and growth of Acropora in extra-tropical waters off Perth, Western Australia. Proc 7th Int Coral Reef Symp 2:1233–1238

  • Miller KJ, Ayre DJ (2004) The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 92:557–568

    Article  PubMed  CAS  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, Mcardle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JB (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pinzón JH (2011) Phylogenetics, population genetics and ecology to understand the evolution of coral-algal mutualisms. Ph.D dissertation, The Pennsylvania State University, p 154

  • Pinzón JH, LaJeunesse TC (2011) Species delimitation of reef building corals using nucleotide sequence phylogenies, population genetics, and symbiosis ecology. Mol Ecol 20:311–325

    Article  PubMed  Google Scholar 

  • Precht WF, Aronson RB (2004) Climate flickers and range shifts of reef corals. Front Ecol Environ 2:307–314

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reyes-Bonilla H (1992) New records for hermatypic corals(Anthozoa: Scleractinia) in the Gulf of California, Mexico, with an historical and biogeographical discussion. J Nat Hist 26:1163–1175

    Article  Google Scholar 

  • Reyes-Bonilla H (1993) Estructura de la comunidad, influencia de la depredación y biología poblacional de corales hermatípicos en el arrecife de Cabo Pulmo, B.C.S. MSc Thesis, Centro de Investigación Científica y de Educación Superior de Ensenada, Departamento de Ecología, p 169

  • Richmond R (1985) Variations in the population biology of Pocillopora damicornis across the Pacific. Proc 5th Int Coral Reef Symp 1:101–107

  • Richmond R (1987a) Energetics, competency, and long-distance dispersal of planula larvae of the coral Pocillopora damicornis. Mar Biol 93:527–533

    Article  Google Scholar 

  • Richmond RH (1987b) Energetic relationships and biogeographical differences among fecundity, growth and reproduction in the reef coral Pocillopora damicornis. Bull Mar Sci 41:594–604

    Google Scholar 

  • Ridgway T, Hoegh-Guldberg O, Ayre DJ (2001) Panmixia in Pocillopora verrucosa from South Africa. Mar Biol 139:175

    Article  CAS  Google Scholar 

  • Rosenberg N (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resources 8:103–106

    Article  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Sherman CDH, Ayre DJ, Miller KJ (2006) Asexual reproduction does not produce clonal populations of the brooding coral Pocillopora damicornis on the Great Barrier Reef, Australia. Coral Reefs 25:7–18

    Article  Google Scholar 

  • Smouse P, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Souter P (2010) Hidden genetic diversity in a key model species of coral. Mar Biol 157:875–885

    Article  Google Scholar 

  • Starger CJ, Yeoh SSR, Dai C-F, Baker AC, DeSalle R (2007) Ten polymorphic STR loci in the cosmopolitan reef coral, Pocillopora damicornis. Mol Ecol Resourc 8:619–621

    Article  Google Scholar 

  • Starger CJ, Barber PH, Ambariyanto, Baker AC (2010) The recovery of coral genetic diversity in the Sunda Strait following the 1883 eruption of Krakatau. Coral Reefs 29:547–565

  • Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornis. Mar Biol 76:279–284

    Article  Google Scholar 

  • Stoddart JA (1984a) Biochemical genetics of Pocillopora damicornis in Kaneobe Bay, Oahu, Hawaii. Hawaii Inst Mar Biol, Tech Report 37:133–150

    Google Scholar 

  • Stoddart JA (1984b) Genetical structure within populations of the coral Pocillopora damicornis. Mar Biol 81:19–30

    Article  CAS  Google Scholar 

  • Stoddart JA (1984c) Genetic differentiation amongst populations of the coral Pocillopora damicornis off Southwestern Australia. Coral Reefs 3:149–156

    Article  Google Scholar 

  • Tatarenkov A, Bergstrom L, Jonsson R, Serrão E, Kautsky L, Johannesson K (2005) Intriguing asexual life in marginal populations of the brown seaweed Fucus vesiculosus. Mol Ecol 14:647–651

    Article  PubMed  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vargas-Angel B, Thomas JD, Hoke SM (2003) High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22:465–473

    Article  Google Scholar 

  • Whitaker K (2006) Genetic evidence for mixed modes of reproduction in the coral Pocillopora damicornis and its effect on population structure. Mar Ecol Prog Ser 306:115–124

    Article  Google Scholar 

  • Widen B, Cronberg N, Widen M (1994) Genotypic diversity, molecular markers and spatial distribution of genets in clonal plants, a literature review. Folio Geobot Phytotax 29:245–263

    Article  Google Scholar 

  • Williams G (1975) Sex and evolution. Princetown University Press, Princetown, NJ

    Google Scholar 

  • Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38: L04601, p 6. doi:10.1029/2010GL046474

  • Yeoh S-R, Dai C-F (2010) The production of sexual and asexual larvae within single broods of the scleractinan coral, Pocillopora damicornis. Mar Biol 157:351–359

    Article  Google Scholar 

  • Zaytsev O, Rabinovich AB, Thomson RE, Silverberg N (2010) Intense diurnal surface currents in the Bay of La Paz, Mexico. Cont Shelf Res 608–619

Download references

Acknowledgments

We thank Tye Pettay and Mark Warner for assistance in the field and the Penn State Genomics Core Facility—University Park, PA. Comments of three anonymous reviewers help in the final version of the manuscript. This research was funded in part by The Pennsylvania State University, the National Science Foundation (IOB 544854 and OCE 09287664), and an Alfred P. Sloan Scholarship to JP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Pinzón.

Additional information

Communicated by Biology Editor Dr. Ruth Gates

Electronic supplementary material

Below is the link to the electronic supplementary material.

338_2012_887_MOESM1_ESM.eps

Figure S1. Estimated number of genetically homogenous clusters between populations at ISLG and PGAL with duplicated genotypes removed. Analysis using Structure (Pritchard et al. 2000) resolved the optimal number of clusters (i.e., populations) at one indicating no population subdivision. The plot figure shown for a given K is based on the composite probabilities of 5 independent statistical runs at that K and depicts both sites combine to form a single genetically homogenous population. Supplementary material 1 (EPS 590 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinzón, J.H., Reyes-Bonilla, H., Baums, I.B. et al. Contrasting clonal structure among Pocillopora (Scleractinia) communities at two environmentally distinct sites in the Gulf of California. Coral Reefs 31, 765–777 (2012). https://doi.org/10.1007/s00338-012-0887-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-012-0887-y

Keywords

Navigation