Skip to main content

Advertisement

Log in

Characterization of a SEPT9 interacting protein, SEPT14, a novel testis-specific septin

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Septins are a highly conserved family of GTP-binding cytoskeletal proteins implicated in multiple cellular functions, including membrane transport, apoptosis, cell polarity, cell cycle regulation, cytokinesis, and oncogenesis. Here we describe the characterization of a novel interacting partner of the septin family, initially cloned from a human testis expression library following yeast two-hybrid isolation to identify SEPT9 binding partners. Upon further genomic characterization and bioinformatics analyses it was determined that this novel septin-interacting partner was also a new member of the mammalian septin family, named SEPT14. SEPT14 maps to 7p11.2 in humans and includes a conserved GTPase domain and a predicted carboxy-terminus coiled-coil domain characteristic of other septins. Three potential translational start methionines were identified by 5′ RACE-PCR encoding proteins of 432-, 427-, and 425-residue peptides, respectively. SEPT14 shares closest homology to SEPT10, a human dendritic septin, and limited homology to SEPT9 isoforms. SEPT14 colocalized with SEPT9 when coexpressed in cell lines, and epitope-tagged forms of these proteins coimmunoprecipitated. Moreover, SEPT14 was coimmunoprecipitated from rat testes using SEPT9 antibodies, and yeast two-hybrid analysis suggested SEPT14 interactions with nine additional septins. Multitissue Northern blotting showed testis-specific expression of a single 5.0-kb SEPT14 transcript. RT-PCR analysis revealed that SEPT14 was not detectable in normal or cancerous ovarian, breast, prostate, bladder, or kidney cell lines and was only faintly detected in fetal liver, tonsil, and thymus samples. Interestingly, SEPT14 was expressed in testis but not testicular cancer cell lines by RT-PCR, suggesting that further investigation of SEPT14 as a testis-specific tumor suppressor is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beites CL, Xie H, Bowser R, Trimble WS (1999) The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci 2:434–439

    Article  PubMed  CAS  Google Scholar 

  • Beites CL, Campbell KA, Trimble WS (2005) The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem J 385:347–353

    Article  PubMed  CAS  Google Scholar 

  • Blaser S, Horn J, Wurmell P, Bauer H, Strumpell S, et al. (2004) The novel human platelet septin SEPT8 is an interaction partner of SEPT4. Thromb Haemost 91:959–966

    PubMed  Google Scholar 

  • Borkhardt A, Teigler-Schlegel A, Fuchs U, Keller C, Konig M, et al. (2001) An ins(X;11)(q24;q23) fuses the MLL and the Septin 6/KIAA0128 gene in an infant with AML-M2. Genes Chromosomes Cancer 32:82–88

    Article  PubMed  CAS  Google Scholar 

  • Burrows JF, Chanduloy S, McIlhatton MA, Nagar H, Yeates K, et al. (2003) Altered expression of the septin gene, SEPT9, in ovarian neoplasia. J Pathol 201:581–588

    Article  PubMed  CAS  Google Scholar 

  • Capurso G, Cmogorc-Jurcevic T, Milione M, Panzuto F, Campanini N, et al. (2005) Peanut-like 1 (septin 5) gene expression in normal and neoplastic human endocrine pancreas. Neuroendocrinology 81:311–321

    Article  PubMed  CAS  Google Scholar 

  • Cerveira N, Correia C, Bizarro S, Pinto C, Lisboa S, et al. (2006) SEPT2 is a new fusion partner of MLL in acute myeloid leukemia with t(2;11)(q37;q23). Oncogene 25:6147–6152

    Article  PubMed  CAS  Google Scholar 

  • Chacko AD, Hyland PL, McDade SS, Hamilton PW, Russell SH, et al. (2005) SEPT9_v4 expression induces morphological change, increased motility and disturbed polarity. J Pathol 206:458–465

    Article  PubMed  CAS  Google Scholar 

  • Drwinga HL, Toji LH, Kim CH, Greene AE, Mulivor RA, et al. (1993) NIGMS human/rodent somatic cell hybrid mapping panels 1 and 2. Genomics 16:311–314

    Article  PubMed  CAS  Google Scholar 

  • Dubois BL, Naylor SL (1993) Characterization of NIGMS human/rodent somatic cell hybrid mapping panel 2 by PCR. Genomics 16:315–319

    Article  PubMed  CAS  Google Scholar 

  • Ernst P, Wang J, Korsmeyer SJ (2002) The role of MLL in hematopoiesis and leukemia. Curr Opin Hematol 9:282–287

    Article  PubMed  Google Scholar 

  • Field CM, Kellogg D (1999) Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol 9:387–394

    Article  PubMed  CAS  Google Scholar 

  • Finley RL Jr, Brent R (1994) Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc Natl Acad Sci USA 91:12980–12984

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Schiestl RH (1991) Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  PubMed  CAS  Google Scholar 

  • Gottfried Y, Rotem A, Lotan R, Steller H, Larisch S (2004) The mitochondrial ARTS protein promotes apoptosis through targeting XIAP. EMBO J 23:1627–1635

    Article  PubMed  CAS  Google Scholar 

  • Hall PA, Russell SE (2004) The pathobiology of the septin gene family. J Pathol 204:489–505

    Article  PubMed  CAS  Google Scholar 

  • Hall PA, Jung K, Hillan KJ, Russell SE (2005) Expression profiling the human septin gene family. J Pathol 206:269–278

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH (1971) Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69:265–276

    Article  PubMed  CAS  Google Scholar 

  • Hsu SC, Hazuka CD, Roth R, Foletti DL, Heuser J, et al. (1998) Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20:1111–1122

    Article  PubMed  CAS  Google Scholar 

  • Ihara M, Kinoshita A, Yamada S, Tanaka H, Tanigaki A, et al. (2005) Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 8:343–352

    Article  PubMed  CAS  Google Scholar 

  • Kalikin LM, Frank TS, Svoboda-Newman SM, Wetzel JC, Cooney KA, et al. (1997) A region of interstitial 17q25 allelic loss in ovarian tumors coincides with a defined region of loss in breast tumors. Oncogene 14:1991–1994

    Article  PubMed  CAS  Google Scholar 

  • Kalikin LM, George RA, Keller MP, Bort S, Bowler NS, et al. (1999) An integrated physical and gene map of human distal chromosome 17q24-proximal 17q25 encompassing multiple disease loci. Genomics 57:36–42

    Article  PubMed  CAS  Google Scholar 

  • Kalikin LM, Sims HL, Petty EM (2000) Genomic and expression analyses of alternatively spliced transcripts of the MLL septin-like fusion gene (MSF) that map to a 17q25 region of loss in breast and ovarian tumors. Genomics 63:165–172

    Article  PubMed  CAS  Google Scholar 

  • Kartmann B, Roth D (2001) Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J Cell Sci 114:839–844

    PubMed  CAS  Google Scholar 

  • Kim DS, Hubbard SL, Peraud A, Salbia B, Sakai K, et al. (2004) Analysis of mammalian septin expression in human malignant brain tumors. Neoplasia 6:168–178

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita M, Kumar S, Mizoguchi A, Ide C, Kinoshita A, et al. (1997) Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev 11:1535–1547

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita A, Kinoshita M, Akiyama H, Tomimoto H, Akiguchi I, et al. (1998) Identification of septins in neurofibrillary tangles in Alzheimer’s disease. Am J Pathol 153:1551–1560

    PubMed  CAS  Google Scholar 

  • Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Self- and actin-templated assembly of Mammalian septins. Dev Cell 3:791–802

    Article  PubMed  CAS  Google Scholar 

  • Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, et al. (2005) The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 8:353–364

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Sakai L, Hasegawa A, Niiya H, Azuma T, et al. (2004) FLJ10849, a septin family gene, fuses MLL in a novel leukemia cell line CNLBC1 derived from chronic neutrophilic leukemia in transformation with t(4;11)(q21;q23). Leukemia 18:998–1005

    Article  PubMed  CAS  Google Scholar 

  • Kremer BE, Haystead T, Macara IG (2005) Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol Biol Cell 16:4648–4659

    Article  PubMed  CAS  Google Scholar 

  • Kuhlenbaumer G, Hannibal MC, Nelis E, Schirmacher A, Verpoorten N, et al. (2005) Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nat Genet 37:1044–1046

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tomooka Y, Noda M (1992) Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 185:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Larisch S (2004) The ARTS connection: role of ARTS in apoptosis and cancer. Cell Cycle 3:1021–1023

    PubMed  CAS  Google Scholar 

  • Larisch S, Yi Y, Lotan R, Kerner H, Eimerl S, et al. (2000) A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol 2:915–921

    Article  PubMed  CAS  Google Scholar 

  • Macara IG, Baldarelli R, Field CM, Glotzer M, Hayashi Y, et al. (2002) Mammalian septins nomenclature. Mol Biol Cell 13:4111–4113

    Article  PubMed  CAS  Google Scholar 

  • McDade SS, Hall PA, Russell SES (2007) Translational control of SEPT9 isoforms is perturbed in disease. Hum Mol Genet 16:742–752

    Article  PubMed  CAS  Google Scholar 

  • McIlhatton MA, Burrows JF, Donaghy PG, Chanduloy S, Johnston PG, et al. (2001) Genomic organization, complex splicing pattern and expression of a human septin gene on chromosome 17q25.3. Oncogene 20:5930–5939

    Article  PubMed  CAS  Google Scholar 

  • Megonigal MD, Rappaport EF, Jones DH, Williams TM, Lovett BD, et al. (1998) t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc Natl Acad Sci U S A 95:6413–6418

    Article  PubMed  CAS  Google Scholar 

  • Meyer C, Schneider B, Jakob S, Strehl S, Attarbaschi A, et al. (2006) The MLL recombinome of acute leukemias. Leukemia 20:777–784

    Article  PubMed  CAS  Google Scholar 

  • Nagase T, Ishikawa K, Suyama M, Kikuno R, Hirosawa M, et al. (1999) Prediction of the coding sequences of unidentified human genes. XIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 6:63–70

    Article  PubMed  CAS  Google Scholar 

  • Nagata K, Kawajiri A, Matsui S, Takagishi M, Shiromizu T, et al. (2003) Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J Biol Chem 278:18538–18543

    Article  PubMed  CAS  Google Scholar 

  • Neufeld TP, Rubin GM (1994) The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77:371–379

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TQ, Sawa H, Okano H, White JG (2000) The C. elegans septin genes, unc-59 and unc-61, are required for normal postembryonic cytokineses and morphogenesis but have no essential function in embryogenesis. J Cell Sci 113 Pt 21:3825–3837

    Google Scholar 

  • Nottenburg C, Gallatin WM, St. John T (1990) Lymphocyte HEV adhesion variants differ in the expression of multiple gene sequences. Gene 95:279–284

    Article  PubMed  CAS  Google Scholar 

  • Osaka M, Rowley JD, Zeleznik-Le NJ (1999) MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc Natl Acad Sci U S A 96:6428–6433

    Article  PubMed  CAS  Google Scholar 

  • Raff T, van der Giet M, Endemann D, Wiederholt T, Paul M (1997) Design and testing of beta-actin primers for RT-PCR that do not co-amplify processed pseudogenes. Biotechniques 23:456–460

    PubMed  CAS  Google Scholar 

  • Russell SE, Hall PA (2005) Do septins have a role in cancer? Br J Cancer 93:499–503

    Article  PubMed  CAS  Google Scholar 

  • Russell SE, McIlhatton MA, Burrows JF, Donaghy PG, Chanduloy S, et al. (2000) Isolation and mapping of a human septin gene to a region on chromosome 17q, commonly deleted in sporadic epithelial ovarian tumors. Cancer Res 60:4729–4734

    PubMed  CAS  Google Scholar 

  • Sanders SL, Field CM (1994) Cell division. Septins in common? Curr Biol 4:907–910

    Article  PubMed  CAS  Google Scholar 

  • Scott M, McCluggage WG, Hillan KJ, Hall PA, Russell SE (2006) Altered patterns of transcription of the septin gene, SEPT9, in ovarian tumorigenesis. Int J Cancer 118:1325–1329

    Article  PubMed  CAS  Google Scholar 

  • Senapathy P, Shapiro MB, Harris NL (1990) Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol 183:252–278

    Article  PubMed  CAS  Google Scholar 

  • Sirajuddin M, Farkasovsky M, Hauer F, Kuhlmann D, Macara IG, et al. (2007) Structural insight into filament formation by mammalian septins. Nature 449:311-315

    Article  PubMed  CAS  Google Scholar 

  • Sorensen AB, Lund AH, Ethelberg S, Copeland NG, Jenkins NA, et al. (2000) Sint1, a common integration site in SL3-3-induced T-cell lymphomas, harbors a putative proto-oncogene with homology to the septin gene family. J Virol 74:2161–2168

    Article  PubMed  CAS  Google Scholar 

  • Spiliotis ET, Nelson WJ (2006) Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci 119:4–10

    Article  PubMed  CAS  Google Scholar 

  • Spiliotis ET, Kinoshita M, Nelson WJ (2005) A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science 307:1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Sui L, Zhang W, Liu Q, Chen T, Li N, et al. (2003) Cloning and functional characterization of human septin 10, a novel member of septin family cloned from dendritic cells. Biochem Biophys Res Commun 304:393–398

    Article  PubMed  CAS  Google Scholar 

  • Surka MC, Tsang CW, Trimble WS (2002) The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell 13:3532–3545

    Article  PubMed  CAS  Google Scholar 

  • Taki T, Ohnishi H, Shinohara K, Sako M, Bessho F, et al. (1999) AF17q25, a putative septin family gene, fuses the MLL gene in acute myeloid leukemia with t(11;17)(q23;q25). Cancer Res 59:4261–4265

    PubMed  CAS  Google Scholar 

  • Versele M, Thorner J (2005) Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol 15:414–424

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Kong C, Xie H, McPherson PS, Grinstein S, et al. (1999) Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr Biol 9:1458–1467

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, et al. (2000) Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 97:13354–13359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank A. Brenner and K. Kraft for technical assistance and L. Privette for critical reading of the manuscript. This work was supported by Department of Defense grant DAMD17-99-9295 (LMK), Canadian Institutes of Health Research (WST), NIH National Research Service Award #5-T32-GM07544 from the National Institute of General Medicine Sciences (EAP), and NIH National Cancer Institute (NCI) grant RO1CA072877 (EMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Petty.

Additional information

Authors E.A. Peterson, L.M. Kalikin, J.D. Steels contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, E.A., Kalikin, L.M., Steels, J.D. et al. Characterization of a SEPT9 interacting protein, SEPT14, a novel testis-specific septin. Mamm Genome 18, 796–807 (2007). https://doi.org/10.1007/s00335-007-9065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-007-9065-x

Keywords

Navigation