Skip to main content
Log in

Further studies on using multiple-cross mapping (MCM) to map quantitative trait loci

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We have completed whole-genome scans for quantitative trait loci (QTLs) associated with acute ethanol-induced activation in the six F2 intercrosses that can be formed from the C57BL/6J (B6), DBA/2J (D2) , BALB/cJ (C), and LP/J (LP) inbred strains. The goal was to test the hypothesis that given the relatively simple structure of the laboratory mouse genome, the same QTLs will be detected in multiple crosses which in turn will provide support for the strategy of multiple-cross mapping (MCM). QTLs with LOD scores greater than 4 were detected on Chrs 1, 2, 3, 8, 9, 13, 14, and 16. Only for the QTL on distal Chr 1 was there convincing evidence that the same or at least a very similar QTL was detected in multiple crosses. We also mapped the Chr 2 QTL directly in heterogeneous stock (HS) animals derived from the four inbred strains. At G19 the QTL was mapped to an approximately 3-Mbp interval and this interval was associated with a haplotype block with a largely biallelic structure: B6-L:C-D2. We conclude that mapping in HS animals not only provides significantly greater QTL resolution, at least in some cases it provides significantly more information about the QTL haplotype structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aitman TJ, Glazier AM, Wallace CA, Cooper LD, et al. (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21, 76–83

    Article  CAS  PubMed  Google Scholar 

  • Bachmanov AA, Reed DR, Li X, Li S, et al. (2002) Voluntary ethanol consumption by mice: genome-wide analysis of quantitative trait loci and their interactions in a C57BL/ByJ x 129P3/J F2 intercross. Genome Res 12, 1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Beck JA, Lloyd S, Hafezparst M, Lennon-Pierce M, et al. (2000) Genealogies of mouse inbred strains. Nat Genet 24, 23–25

    Article  CAS  PubMed  Google Scholar 

  • Belknap JK, Atkins AL (2001) The replicability of QTLs for murine alcohol preference drinking behavior across eight independent studies. Mamm Genome 12, 893–899

    Article  CAS  PubMed  Google Scholar 

  • Belknap JK, Hitzemann R, Crabbe JC, Phillips T, et al. (2001) QTL analysis and genome wide mutagenesis in mice: complementary genetic approaches to the dissection of complex traits. Behav Genet 31, 5–15

    Article  CAS  PubMed  Google Scholar 

  • Bonhomme F (1986) Evolutionary relationships in the genus Mus. Curr Top Microbiol Immunol 127, 19–34

    CAS  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 1, 889–90

    Article  CAS  Google Scholar 

  • Carter TA, Del Rio JA, Greenhall JA, Latronica ML, et al. (2001) Chipping away at comples behavior: Transcriptome/phenotype correlations in the mouse brain. Physiol Behav 73, 849–857

    Article  CAS  PubMed  Google Scholar 

  • Cervino AC, Guoya L, Edwards S, Zhu J, et al. (2005) Integrating QTL and highh density SNP analyses in mice to indentify Insig2 as a susceptibility gene for plasma cholesterol levels. Genomics 86, 505–517

    Article  CAS  PubMed  Google Scholar 

  • Chesler EJ, Lu L, Shou S, Qu Y, Gu J, et al. (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37, 233–242

    Article  CAS  PubMed  Google Scholar 

  • Collison M, Glazier AM, Graham D, Morton J, et al. (2000) Cd36 and molecular mechanisms of insulin resistance in the stroke-prone spontaneously hypertensive rat. Diabetes 49, 2222–2226

    CAS  PubMed  Google Scholar 

  • Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18, 19–24

    Article  CAS  PubMed  Google Scholar 

  • Demarest K, McCaughran J, Mahjubi E, Cipp L, et al. (1999) Identification of an acute ethanol response quantitative trait locus on mouse chromosome 2. J Neurosci 19, 549–561

    CAS  PubMed  Google Scholar 

  • Demarest K, Koyner J, McCaughran J, Cipp L, Hitzemann R (2001) Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity. Behav Genet 31, 79–91

    Article  CAS  PubMed  Google Scholar 

  • Dietrich W, Katz H, Lincoln SE, Shin H, et al. (1992) A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447

    CAS  PubMed  Google Scholar 

  • Dietrich WF, Miller JC, Steen RG, et al. (1994) A genetic map of the mouse with 4,006 simple sequence polymorphisms. Nat Genet 7, 220–245

    Article  CAS  PubMed  Google Scholar 

  • Dietrich WF, Miller J, Steen R, et al (1996) A comprehensive genetic map of the mouse genome. Nature 380, 149–152

    Article  CAS  PubMed  Google Scholar 

  • Flint J (2003) Analysis of quantitative trait loci that influence animal behavior. J Neurobiol 54, 46–77

    Article  CAS  PubMed  Google Scholar 

  • Flint J, Mott R (2001) Finding the molecular basis of quantitative traits: Successes and pitfalls. Nat Rev Genet 2, 437–445

    Article  CAS  PubMed  Google Scholar 

  • Flint J, Corley R, DeFries JC, Fulker DW, et al. (1995) A simple genetic basis for a complex psychological trait in laboratory mice. Science 269, 1432–1435

    Article  CAS  PubMed  Google Scholar 

  • Frankel WN, Valenzuela A, Lutz CM, Johnson EW, et al. (1995) New seizure frequency QTL and the complex genetics of epilepsy in EL mice. Mamm Genome 6, 830–838

    Article  CAS  PubMed  Google Scholar 

  • Geschwind DH (2000) Mice, microarrays, and the genetic diversity of the brain. Proc Natl Acad Sci USA 97(20), 10676–10678

    Article  CAS  PubMed  Google Scholar 

  • Gershenfeld HK, Neumann PE, Mathis C, Crawley JN, et al. (1997) Mapping quantitative trait loci for open-field behavior in mice. Behav Genet 27(3), 201–210

    Article  CAS  PubMed  Google Scholar 

  • Gill K, Boyle A, Lake K, Desaulniers N (2000) Alcohol-induced locomotor activation in C57BL/6J, A/J and AXB/BXA recombinant inbred mice: strains distribution patterns and quantitative trait loci analysis. Psychopharmacology 150, 412–421

    Article  CAS  PubMed  Google Scholar 

  • Grupe A, Germer S. Usuka J, Usuka J, et al. (2001) In silico mapping of complex disease-related traits in mice. Science 292, 1915–1918

    Article  CAS  PubMed  Google Scholar 

  • Hitzemann R, Demarest K, Koyner J, Cipp L, et al. (2000) Effects of genetic cross on the detection of quantitative trait loci and a novel approach to mapping QTLs. Pharmacol Biochem Behav 67, 767–772

    Article  CAS  PubMed  Google Scholar 

  • Hitzemann R, Malmanger B, Cooper S, Coulombe S, et al. (2002) Multiple cross mapping (MCM) markedly improves the localization of a QTL for ethanol-induced activation. Genes Brain Behav 1, 214–222

    Article  CAS  PubMed  Google Scholar 

  • Hitzemann R, Malmanger B, Reed C, Lawler M, et al. (2003) A strategy for the integration of QTL, gene expression and sequence analyses. Mamm Genome 11, 733–747

    Article  CAS  Google Scholar 

  • Hitzemann R, Reed C, Malmanger B, Lawler M, et al. (2004) On the integration of alcohol related quantitative trait loci and gene expression analyses. Alcohol Clin Exp Res 28, 1437–1438

    Article  CAS  PubMed  Google Scholar 

  • Karp CL, Grupe A, Schadt E, Ewart SL, et al. (2000) Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 1, 221–226

    Article  CAS  PubMed  Google Scholar 

  • Khatkar MS, Thomson PC, Tammen I, Raadsma HW (2004) Quantitative trait loci mapping in dairy cattle: review and meta analysis. Genet Select Evol 26, 163–190

    Article  CAS  Google Scholar 

  • Koyner J, Demarest K, McCaughran J, Cipp L, et al. (2000) Identification and time dependence of quantitative trait loci for basal locomotor activity in the BXD recombinant inbred series and a B6D2 F2 intercross. Behav Gene. 30(3), 159–170

    Article  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11, 241–247

    Article  CAS  PubMed  Google Scholar 

  • Li R, Lyons MA, Wittenburg H, Paigen B, Churchill GA (2005) Combining data from multiple inbred line crosses improves the power and resolution of qunatitative trait loci mapping. Genetics 169, 1699–1709

    Article  CAS  PubMed  Google Scholar 

  • Lockhart DJ, Barlow C (2001) Expressing what’s on your mind: DNA arrays and the brain. Nat Rev Neurosci 2, 63–68

    Article  CAS  PubMed  Google Scholar 

  • Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35, 303–339

    Article  CAS  PubMed  Google Scholar 

  • Markel PD, DeFries JC, Johnson TE (1995) Ethanol-induced anesthesia in inbred strains of long-sleep and short-sleep mice: a genetic analysis of repeated measures using censored data. Behav Gen 25(1), 67–73

    Article  CAS  Google Scholar 

  • Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97, 12649–12654

    Article  PubMed  Google Scholar 

  • Park YG, Clifford R, Buettow KH, Hunter KW (2003) Multiple cross and inbred strain haplotype mapping of complex trait candidate genes. Genome Res 13, 118–121

    Article  CAS  PubMed  Google Scholar 

  • Patel NV, Hitzemann RJ (1999) Detection and mapping of quantitative trait loci for haloperidol-induced catalepsy in a C57BL/6J x DBA/2J F2 intercross. Behav Genet 29(5), 303–310

    Article  CAS  PubMed  Google Scholar 

  • Phillips TJ, Huson M, Gwiazdon C, Burkhart-Kasch S, Shen EH (1995) Effects of acute and repeated ethanol exposures on the locomotor activity of BXD recombinant inbred mice. Alcohol Clin Exp Res 19, 1–10

    Article  Google Scholar 

  • Rasmussen E, Cipp L, Hitzemann R (1999) Identification of quantitative trait loci for haloperidol-induced catalepsy on mouse chromosome 14. J Pharmacol Exp Ther 290(3), 1337–1346

    CAS  PubMed  Google Scholar 

  • Sandberg R, Yasuda R, Pankratz DG, Carter TA, et al. (2000) Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci U S A 97, 11038–11043

    Article  CAS  PubMed  Google Scholar 

  • Silver L (1995) Mouse Genetics (Oxford: Oxford University Press)

    Google Scholar 

  • Solberg LC, Valdar W, Gauguier D, Nunez G, et al. (2006) A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mamm Genome 17, 129–146

    Article  PubMed  Google Scholar 

  • Talbot CJ, Radcliffe RA, Fullerton J, Hitzemann R, Wehner JM, et al. (2003) Fine scale mapping of a genetic locus for conditioned fear. Mamm Genome 14(4), 223–230

    Article  PubMed  Google Scholar 

  • Wade CM, Kulbokas EJ 3rd, Kirby AW, Zody MC, Mullikin JC, et al. (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420(6915), 547–548

    Article  CAS  Google Scholar 

  • Wayne ML, McIntyre LM (2002) Combining mapping and arraying: An approach to candidate gene identification. Proc Nat Acad Sci U S A 99(23), 14903–14906

    Article  CAS  Google Scholar 

  • Wiltshire T, Pletcher MT, Batalov S, Barnes SW, et al. (2003) Genome-wide single nucleotide polymorphism anlaysis defines halplotype patterns in mouse. Proc Natl Acad Sci U S A 100, 3380–3385

    Article  CAS  PubMed  Google Scholar 

  • Yalcin B, Fullerton J, Miller S, Keays DA, et al. (2004) Unexpected complexity in the haplotypes of commonly used inbred strains of laboratory mice. Proc Natl Acad Sci U S A 101(26), 9734–9739

    Article  CAS  PubMed  Google Scholar 

  • Yi N, Xu S (2002) Linkage analysis of quantitative trait loci in multiple line crosses. Genetica 114, 217–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the National Institutes of Health AA11034, AA 13484, MH 51372, and the Veterans Affairs Research Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Hitzemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malmanger, B., Lawler, M., Coulombe, S. et al. Further studies on using multiple-cross mapping (MCM) to map quantitative trait loci. Mamm Genome 17, 1193–1204 (2006). https://doi.org/10.1007/s00335-006-0070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-006-0070-2

Keywords

Navigation