Skip to main content
Log in

The 3D Incompressible Euler Equations with a Passive Scalar: A Road to Blow-Up?

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The three-dimensional incompressible Euler equations with a passive scalar θ are considered in a smooth domain \(\varOmega\subset \mathbb{R}^{3}\) with no-normal-flow boundary conditions \(\boldsymbol{u}\cdot\hat{\boldsymbol{n}}|_{\partial\varOmega} = 0\). It is shown that smooth solutions blow up in a finite time if a null (zero) point develops in the vector B=∇q×∇θ, provided B has no null points initially: \(\boldsymbol{\omega} = \operatorname{curl}\boldsymbol {u}\) is the vorticity and q=ω⋅∇θ is a potential vorticity. The presence of the passive scalar concentration θ is an essential component of this criterion in detecting the formation of a singularity. The problem is discussed in the light of a kinematic result by Graham and Henyey (Phys. Fluids 12:744–746, 2000) on the non-existence of Clebsch potentials in the neighbourhood of null points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    Book  MATH  Google Scholar 

  • Arnold, V.I., Khesin, B.: Topological Methods in Hydrodynamics. Springer, Berlin (1998)

    MATH  Google Scholar 

  • Bardos, C., Titi, E.S.: Euler equations of incompressible ideal fluids. Russ. Math. Surv. 62, 409–451 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Bardos, C., Titi, E.S.: Loss of smoothness and energy conserving rough weak solutions for the 3D Euler equations. Discrete Contin. Dyn. Syst. 3, 187–195 (2010)

    MathSciNet  Google Scholar 

  • Bardos, C., Titi, E.S.: Mathematics and turbulence: where do we stand? J. Turbul. 14, 42–76 (2013)

    Article  Google Scholar 

  • Bardos, C., Titi, E.S., Wiedemann, E.: The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow. C. R. Math. Acad. Sci. Paris, Sér. I, Math. 350(15), 757–760 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Beale, J.T., Kato, T., Majda, A.J.: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Brenier, Y.: Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Commun. Pure Appl. Math. 52, 411–452 (1999)

    Article  MathSciNet  Google Scholar 

  • Bustamante, M.D., Kerr, R.M.: 3D Euler in a 2D symmetry plane. Physica D 237, 1912–1920 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P.: Geometric statistics in turbulence. SIAM Rev. 36, 73–98 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44, 603–621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P., Procaccia, I.: Scaling in fluid turbulence: a geometric theory. Phys. Rev. E 47, 3307–3315 (1993)

    Article  MathSciNet  Google Scholar 

  • Constantin, P., Procaccia, I., Sreenivasan, K.R.: Fractal geometry of isoscalar surfaces in turbulence: theory and experiments. Phys. Rev. Lett. 67, 1739–1742 (1991)

    Article  Google Scholar 

  • Constantin, P., Fefferman, C., Madja, A.J.: Geometric constraints on potential singular solutions for the 3−D Euler equation. Commun. Partial Differ. Equ. 21, 559–571 (1996)

    Article  MATH  Google Scholar 

  • De Lellis, C., Székelyhidi, L.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417–1436 (2009)

    Article  MATH  Google Scholar 

  • De Lellis, C., Székelyhidi, L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195, 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • Ertel, H.: Ein neuer hydrodynamischer Wirbelsatz. Meteorol. Z. 59, 271–281 (1942)

    Google Scholar 

  • Ferrari, A.B.: On the blow-up of solutions of the 3D Euler equations in a bounded domain. Commun. Math. Phys. 155, 277–294 (1993)

    Article  MATH  Google Scholar 

  • Gibbon, J.D.: The 3D Euler equations: where do we stand? Physica D 237, 1894–1904 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Gibbon, J.D., Holm, D.D.: The dynamics of the gradient of potential vorticity. J. Phys. A, Math. Theor. 43, 17200 (2010)

    Article  MathSciNet  Google Scholar 

  • Gibbon, J.D., Holm, D.D.: Stretching and folding diagnostics in solutions of the three-dimensional Euler and Navier–Stokes equations. In: Robinson, J.C., Rodrigo, J.L., Sadowski, W. (eds.) Mathematical Aspects of Fluid Mechanics, pp. 201–220. CUP, Cambridge (2012)

    Chapter  Google Scholar 

  • Gräfke, T., Homann, H., Dreher, J., Grauer, R.: Numerical simulations of possible finite time singularities in the incompressible Euler equations. Comparison of numerical methods. Physica D 237, 1932–1936 (2008)

    Article  MathSciNet  Google Scholar 

  • Graham, C.R., Henyey, F.: Clebsch representation near points where the vorticity vanishes. Phys. Fluids 12, 744–746 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Hoskins, B.J., McIntyre, M.E., Robertson, A.W.: On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111, 877–946 (1985)

    Article  Google Scholar 

  • Hou, T.Y., Li, R.: Dynamic depletion of vortex stretching and non blow-up of the 3-D incompressible Euler equations. J. Nonlinear Sci. 16, 639–664 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Hou, T.Y.: Blow-up or no blow-up? The interplay between theory and numerics. Physica D 237, 1937–1944 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kato, T.: Non-stationary flows of viscous and ideal flows in R 3. J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  • Kato, T., Lai, C.Y.: Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56, 15–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Kerr, R.M.: Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A 5, 1725–1746 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Kurgansky, M.V., Pisnichenko, I.: Modified Ertel potential vorticity as a climate variable. J. Atmos. Sci. 57, 822–835 (2000)

    Article  MathSciNet  Google Scholar 

  • Kurgansky, M.V., Tatarskaya, M.S.: The potential vorticity concept in meteorology: a review. Izv., Atmos. Ocean. Phys. 23, 587–606 (1987)

    Google Scholar 

  • Lichtenstein, L.: Uber einige Existenzproblem der Hydrodynamik homogener unzusammendrückbarer, reibunglosser Flüssikeiten und die Helmholtzschen Wirbelsalitze. Math. Z. 23, 89–154 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  • Lichtenstein, L.: Uber einige Existenzproblem der Hydrodynamik homogener unzusammendrückbarer, reibunglosser Flüssikeiten und die Helmholtzschen Wirbelsalitze. Math. Z. 26, 193–323 (1927)

    Article  MathSciNet  Google Scholar 

  • Lichtenstein, L.: Uber einige Existenzproblem der Hydrodynamik homogener unzusammendrückbarer, reibunglosser Flüssikeiten und die Helmholtzschen Wirbelsalitze. Math. Z. 32, 608 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  • Moffatt, H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129 (1969)

    Article  MATH  Google Scholar 

  • Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., Yanovski, V.V.: On the freezing-in integrals and Lagrange invariants in hydrodynamic models. Sov. Phys. JETP 56, 117–123 (1982)

    Google Scholar 

  • Ponce, G.: Remarks on a paper by J.T. Beale, T. Kato, and A. Majda. Commun. Math. Phys. 98, 349–353 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3, 343–401 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Shnirelman, A.: On the non-uniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50, 1260–1286 (1997)

    Article  MathSciNet  Google Scholar 

  • Shirota, T., Yanagisawa, T.: A continuation principle for the 3D Euler equations for incompressible fluids in a bounded domain. Proc. Jpn. Acad. 69, 77–82 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Temam, R.: On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20(1), 32–43 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Wiedemann, E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28, 727–730 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Yahalom, A.: Energy principles for barotropic flows with applications to gaseous disks. Thesis submitted as part of the requirements for the degree of Ph.D. to the Senate of the Hebrew University of Jerusalem (1996)

Download references

Acknowledgements

The authors would like to thank a referee for some very helpful comments. John Gibbon also thanks the Isaac Newton Institute for Mathematical Sciences Cambridge for its hospitality (July–December 2012) on the programme ‘Topological Dynamics in the Physical and Biological Sciences’, under whose auspices this work was done. He would also like to thank Darryl Holm of Imperial College London for several discussions on this problem. The work of E.S. Titi is supported in part by the Minerva Stiftung/Foundation and also by the NSF grants DMS-1009950, DMS-1109640 and DMS-1109645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Gibbon.

Additional information

Communicated by Peter Constantin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbon, J.D., Titi, E.S. The 3D Incompressible Euler Equations with a Passive Scalar: A Road to Blow-Up?. J Nonlinear Sci 23, 993–1000 (2013). https://doi.org/10.1007/s00332-013-9175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-013-9175-4

Keywords

Mathematics Subject Classification

Navigation