Skip to main content
Log in

Comparison of fMRI coregistration results between human experts and software solutions in patients and healthy subjects

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Functional magnetic resonance imaging (fMRI) performed by echo-planar imaging (EPI) is often highly distorted, and it is therefore necessary to coregister the functional to undistorted anatomical images, especially for clinical applications. This pilot study provides an evaluation of human and automatic coregistration results in the human motor cortex of normal and pathological brains. Ten healthy right-handed subjects and ten right-handed patients performed simple right hand movements during fMRI. A reference point chosen at a characteristic anatomical location within the fMRI sensorimotor activations was transferred to the high resolution anatomical MRI images by three human fMRI experts and by three automatic coregistration programs. The 3D distance between the median localizations of experts and programs was calculated and compared between patients and healthy subjects. Results show that fMRI localization on anatomical images was better with the experts than software in 70% of the cases and that software performance was worse for patients than healthy subjects (unpaired t-test: P = 0.040). With 45.6 mm the maximum disagreement between experts and software was quite large. The inter-rater consistency was better for the fMRI experts compared to the coregistration programs (ANOVA: P = 0.003). We conclude that results of automatic coregistration should be evaluated carefully, especially in case of clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beisteiner R (2006) Funktionelle Magnetresonanztomographie. In: Lehrner J, Pusswald G, Fertl E, Kryspin-Exner I, Strubreither W (eds) Klinische Neuropsychologie. Springer, Wien New York, pp 239–252

    Chapter  Google Scholar 

  2. Beisteiner R, Barth M (2005) Probleme und Lösungsmöglichkeiten bei Patientenuntersuchungen mit funktioneller Magnetresonanztomographie (fMRT). In: Walter H (ed) Funktionelle Bildgebung in Psychiatrie und Psychotherapie–Methodische Grundlagen und Klinische Anwendungen. Schattauer, Stuttgart, pp 74–88

    Google Scholar 

  3. Vlieger E, Majoie C, Leenstra S et al (2004) Functional magnetic resonance imaging for neurosurgical planning in neurooncology. Eur Radiol 14:1143–1153. DOI 10.1007/s003300042328-y

    Article  PubMed  Google Scholar 

  4. Majos A, Tybor K, Stefañczyk L et al (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15:1148–1158. DOI 10.1007/s00330-004-2565-0

    Article  PubMed  Google Scholar 

  5. Hesselmann V, Maarouf M, Hunsche S et al (2006) Functional MRI for immediate monitoring stereotactic thalamotomy in a patient with essential tremor. Eur Radiol. DOI 10.1007/s00330-006-0211-8

  6. Neugroschl C, Denolin V, Schuind F et al (2005) Functional MRI activation of somatosensory and motor cortices in a hand-grafted patient with early clinical sensorimotor recovery. Eur Radiol 15:1806–1814. DOI 10.1007/s00330-005-2763-4

    Article  PubMed  CAS  Google Scholar 

  7. Yetkin FZ, Rosenberg RN, Weiner MF et al (2006) FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. Eur Radiol 16:193–206. DOI 10.1007/s00330-005-2794-x

    Article  PubMed  Google Scholar 

  8. Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C 10:L55–L58. DOI 10.1088/0022-3719/10/3/004

    Article  CAS  Google Scholar 

  9. Beisteiner R, Windischberger C, Lanzenberger R et al (2001) Finger somatotopy in human motor cortex. NeuroImage 13:1016–1026. DOI 10.1006/nimg.2000.0737

    Article  PubMed  CAS  Google Scholar 

  10. Kamada K, Houkin K, Takeuchi F et al (2003) Visualization of the eloquent motor system by integration of MEG, functional, and anisotropic diffusion-weighted MRI in functional neuronavigation. Surg Neurol 59:352–361; discussion 361–352. DOI 10.1016/S0090-3019(03)00018-1

    Article  PubMed  Google Scholar 

  11. Sabbah P, Foehrenbach H, Dutertre G et al (2002) Multimodal anatomic, functional, and metabolic brain imaging for tumor resection. Clin Imaging 26:6–12. DOI 10.1016/S0899-7071(01)00313-8

    Article  PubMed  CAS  Google Scholar 

  12. Braun V, Dempf S, Tomczak R et al (2001) Multimodal cranial neuronavigation: direct integration of functional magnetic resonance imaging and positron emission tomography data: technical note. Neurosurgery 48:1178–1181; discussion 1181–1172

    Article  PubMed  CAS  Google Scholar 

  13. Zhao Y, Anderson A, Gore J (2005) Computer simulation studies of the effects of dynamic shimming on susceptibility artifacts in EPI at high field. J Magn Reson 173:10–22. DOI 10.1016/j.jmr.2004.11.009

    Article  PubMed  CAS  Google Scholar 

  14. Cusack R, Russell B, Cox S et al (2005) An evaluation of the use of passive shimming to improve frontal sensitivity in fMRI. NeuroImage 24:82–91. DOI 10.1016/j.neuroimage.2004.08.029

    Article  PubMed  Google Scholar 

  15. Wilson J, Jenkinson M, de Araujo I et al (2002) Fast, fully automated global and local magnetic field optimization for fMRI of the human brain. NeuroImage 17:967–976. DOI 10.1016/S1053-8119(02)91172-9

    Article  PubMed  Google Scholar 

  16. Deichmann R, Gottfried J, Hutton C et al (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage 19:430–441. DOI 10.1016/S1053-8119(03)00073-9

    Article  PubMed  CAS  Google Scholar 

  17. Chen N, Wyrwicz A (2001) Optimized distortion correction technique for echo planar imaging. Magn Reson Med 45:525–528. DOI 10.1002/1522-2594(200103)45:3<525::AID-MRM1070>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  18. Windischberger C, Robinson S, Rauscher A et al (2004) Robust field map generation using a triple-echo acquisition. J Magn Reson Imaging 20:730–734. DOI 10.1002/jmri.20158

    Article  PubMed  Google Scholar 

  19. Cusack R, Brett M, Osswald K (2003) An evaluation of the use of magnetic field maps to undistort echo-planar images. NeuroImage 18:127–142. DOI 10.1006/nimg.2002.1281

    Article  PubMed  Google Scholar 

  20. Hutton C, Bork A, Josephs O et al (2002) Image distortion correction in fMRI: A quantitative evaluation. NeuroImage 16:217–240. DOI 10.1006/nimg.2001.1054

    Article  PubMed  Google Scholar 

  21. Reber P, Wong E, Buxton R et al (1998) Correction of off resonance-related distortion in echo-planar imaging using EPI-based field maps. Magn Reson Med 39:328–330

    Article  PubMed  CAS  Google Scholar 

  22. Jezzard P, Balaban R (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34:65–73

    Article  PubMed  CAS  Google Scholar 

  23. Ernst T, Speck O, Itti L et al (1999) Simultaneous correction for interscan patient motion and geometric distortions in echoplanar imaging. Magn Reson Med 42:201–205. DOI 10.1002/(SICI)1522-2594(199907)42:1<201::AID-MRM27>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  24. Nimsky C, Ganslandt O, Kober H et al (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44:1249–1255; discussion 1255–1246

    Article  PubMed  Google Scholar 

  25. Fahlbusch R, Ganslandt O, Nimsky C (2000) Intraoperative imaging with open magnetic resonance imaging and neuronavigation. Childs Nerv Syst 16:829–831. DOI 10.1007/s003810000344

    Article  PubMed  CAS  Google Scholar 

  26. Kober H, Nimsky C, Vieth J et al (2002) Co-registration of function and anatomy in frameless stereotaxy by contour fitting. Stereotact Funct Neurosurg 79:272–283

    Article  PubMed  Google Scholar 

  27. Wells WM, 3rd, Viola P, Atsumi H et al (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1:35–51. DOI 10.1016/S1361-8415(01)80004-9

    Article  PubMed  Google Scholar 

  28. Crum W, Hartkens T, Hill D (2004) Non-rigid image registration: Theory and practice. Br J Radiol 77:S140–S153. DOI 10.1259/bjr/25329214

    Article  PubMed  Google Scholar 

  29. Crum W, Griffin L, Hill D et al (2003) Zen and the art of medical image registration: Correspondence, homology, and quality. NeuroImage 20:1425–1437. DOI 10.1016/j.neuroimage.2003.07.014

    Article  PubMed  CAS  Google Scholar 

  30. Chui H, Win L, Schultz R et al (2003) A unified non-rigid feature registration method for brain mapping. Med Image Anal 7:113–130. DOI 10.1016/S1361-8415(02)00102-0

    Article  PubMed  Google Scholar 

  31. Jannin P, Morandi X, Fleig OJ et al (2002) Integration of sulcal and functional information for multimodal neuronavigation. J Neurosurg 96:713–723

    Article  PubMed  Google Scholar 

  32. Jannin P, Fleig O, Seigneuret E et al (2000) A data fusion environment for multimodal and multi-informational neuronavigation. Comput Aided Surg 5:1–10. DOI 10.1002/(SICI)1097-0150(2000)5:1<1::AID-IGS1>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  33. Hunsche S, Sauner D, Treuer H et al (2004) Optimized distortion correction of epi-based statistical parametrical maps for stereotactic neurosurgery. Magn Reson Imaging 22:163–170. DOI http://dx.doi.org/10.1016/j.mri.2003.08.006

    Article  PubMed  Google Scholar 

  34. Rutten G, Ramsey N, Noordmans H et al (2003) Toward functional neuronavigation: implementation of functional magnetic resonance imaging data in a surgical guidance system for intraoperative identification of motor and language cortices. Technical note and illustrative case. Neurosurg Focus 15:E6

    PubMed  Google Scholar 

  35. Yokoi T, Soma T, Shinohara H et al (2004) Accuracy and reproducibility of co-registration techniques based on mutual information and normalized mutual information for MRI and SPECT brain images. Ann Nucl Med 18:659–667

    Article  PubMed  Google Scholar 

  36. Wilkinson I, Romanowski C, Jellinek D et al (2003) Motor functional MRI for pre-operative and intraoperative neurosurgical guidance. Br J Radiol 76:98–103. DOI 10.1259/bjr/66817309

    Article  PubMed  CAS  Google Scholar 

  37. Gumprecht H, Ebel G, Auer D et al (2002) Neuronavigation and functional MRI for surgery in patients with lesion in eloquent brain areas. Minim Invasive Neurosurg 45:151–153. DOI 10.1055/s-2002-34341

    Article  PubMed  CAS  Google Scholar 

  38. Edward V, Windischberger C, Cunnington R et al (2000) Quantification of fMRI artifact reduction by a novel plaster cast head holder. Hum Brain Mapp 11:207–213. DOI 10.1002/1097-0193(200011)11:3<207::AID-HBM60>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  39. Woods RP, Grafton ST, Holmes CJ et al (1998) Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152

    Article  PubMed  CAS  Google Scholar 

  40. Hartkens T, Rueckert D, Schnabel J et al (2002) VTK CISG registration toolkit: An open source software package for affine and non-rigid registration of single- and multimodal 3D images. BVM2002. Springer, Leipzig. Available at: http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-56/185.pdf. (accessed May 30, 2005)

  41. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219. DOI 10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  42. Gartus A, Geissler A, Foki T et al (2005) Automatic coregistration of functional and anatomical data: Validation of some software solutions. NeuroImage 26:S41

    Google Scholar 

  43. Hutton B, Braun M (2003) Software for image registration: algorithms, accuracy, efficacy. Semin Nucl Med 33:180–192. DOI http://dx.doi.org/10.1053/snuc.2003.127309

    Article  PubMed  Google Scholar 

  44. Yoo S, Talos I, Golby A et al (2004) Evaluating requirements for spatial resolution of fMRI for neurosurgical planning. Hum Brain Mapp 21:34–43. DOI 10.1002/hbm.10148

    Article  PubMed  Google Scholar 

  45. Studholme C, Hill D, Hawkes D (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32:71–86. DOI 10.1016/S0031-3203(98)00091-0

    Article  Google Scholar 

  46. Brett M, Leff AP, Rorden C et al (2001) Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage 14:486–500. DOI 10.1006/nimg.2001.0845

    Article  PubMed  CAS  Google Scholar 

  47. Beisteiner R, Lanzenberger R, Novak K et al (2000) Improvement of presurgical patient evalation by generation of functional magnetic resonance risk maps. Neurosci Lett 290:13–16. DOI 10.1016/S0304-3940(00)01303-3

    Article  PubMed  CAS  Google Scholar 

  48. Beisteiner R (2004) Indikationen, Probleme und Ergebnisse der funktionellen MRT im Kindesalter. Pädiatrische Praxis 64:285–298

    Google Scholar 

  49. Geissler A, Lanzenberger R, Barth M et al (2005) Influence of fMRI smoothing procedures on replicability of fine scale motor localization. NeuroImage 24:323–331. DOI 10.1016/j.neuroimage.2004.08.042

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Austrian Science Fund FWF (P15102). We want to acknowledge important general support by Prof. Lueder Deecke, Department of Clinical Neurology, Medical University of Vienna, Head of the Ludwig Boltzmann Institute for Functional Brain Topography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Beisteiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gartus, A., Geissler, A., Foki, T. et al. Comparison of fMRI coregistration results between human experts and software solutions in patients and healthy subjects. Eur Radiol 17, 1634–1643 (2007). https://doi.org/10.1007/s00330-006-0459-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0459-z

Keywords

Navigation