Skip to main content
Log in

The plastid genome as a chassis for synthetic biology-enabled metabolic engineering: players in gene expression

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Owing to its small size, prokaryotic-like molecular genetics, and potential for very high transgene expression, the plastid genome (plastome) is an attractive plant synthetic biology chassis for metabolic engineering. The plastome exists as a homogenous, compact, multicopy genome within multiple-specialized differentiated plastid compartments. Because of this multiplicity, transgenes can be highly expressed. For coordinated gene expression, it is the prokaryotic molecular genetics that is an especially attractive feature. Multiple genes in a metabolic pathway can be expressed in a series of operons, which are regulated at the transcriptional and translational levels with cross talk from the plant’s nuclear genome. Key features of each regulatory level are reviewed, as well as some examples of plastome-enabled metabolic engineering. We also speculate about the transformative future of plastid-based synthetic biology to enable metabolic engineering in plants as well as the problems that must be solved before routine plastome-enabled synthetic circuits can be installed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allison LA, Maliga P (1995) Light-responsive and transcription-enhancing elements regulate the plastid psbD core promoter. EMBO J 14:3721–3730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allison L, Simon L, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole AM, Oishi KK, Daniell H (2007) Field production and functional evaluation of chloroplast-derived interferon-α2b. Plant Biotechnol J 5:511–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baecker JJ, Sneddon JC, Hollingsworth MJ (2009) Efficient translation in chloroplasts requires element(s) upstream of the putative ribosome binding site from atpI. Am J Bot 96:627–636

    CAS  PubMed  Google Scholar 

  • Bock R (2013) Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol Biol 83:21–31

    CAS  PubMed  Google Scholar 

  • Boyhan D, Daniell H (2011) Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J 9:585–598

    CAS  PubMed  Google Scholar 

  • Buntru M, Vogel S, Spiegel H, Schillberg S (2014) Tobacco BY-2 cell-free lysate: an alternative and highly productive plant-based in vitro translation system. BMC Biotechnol 13:37

    Google Scholar 

  • Chakrabarti SK, Lutz KA, Lertwiriyawong B, Svab Z, Maliga P (2006) Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res 15:481–488

    CAS  PubMed  Google Scholar 

  • Christopher DA, Kim M, Mullet JE (1992) A novel light-regulated promoter is conserved in cereal and dicot chloroplasts. Plant Cell 4:785–798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosa BD, Moar W, Lee S-B, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    PubMed  PubMed Central  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H (2007) Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci USA 104:6879–6880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783

    CAS  PubMed  Google Scholar 

  • Dlugosz EM, Lenaghan SC, Stewart CN (2016) A robotic platform for high-throughput protoplast isolation and transformation. J Vis Exp 115:e54300. https://doi.org/10.3791/54300

    Article  Google Scholar 

  • Drechsel O, Bock R (2010) Selection of Shine-Dalgarno sequences in plastids. Nucleic Acids Res 39:1427–1438

    PubMed  PubMed Central  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    CAS  PubMed  Google Scholar 

  • Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345

    CAS  PubMed  Google Scholar 

  • Eisermann A, Tiller K, Link G (1990) In vitro transcription and DNA binding characteristics of chloroplast and etioplast extracts from mustard (Sinapis alba) indicate differential usage of the psbA promoter. EMBO J 9:3981–3987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emadpour M, Karcher D, Bock R (2015) Boosting riboswitch efficiency by RNA amplification. Nucleic Acids Res 43:e66–e66

    PubMed  PubMed Central  Google Scholar 

  • Engler C, Youles M, Gruetzner R, Ehnert T-M, Werner S, Jones JDG, Patron NJ, Marillonnet S (2014) A golden gate modular cloning toolbox for plants. ACS Synth Biol 3(11):839–843

    CAS  PubMed  Google Scholar 

  • Favory JJ, Kobayshi M, Tanaka K, Peltier G, Kreis M, Valay JG, Lerbs-Mache S (2005) Specific function of a plastid sigma factor for ndhF gene transcription. Nucleic Acids Res 33:5991–5999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes P, Zhou F. Erban A, Karcher D, Kopka J, Bock R (2016) A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. eLife 5:e13664

    PubMed  PubMed Central  Google Scholar 

  • Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammani K, Cook WB, Barkan A (2012) RNA binding and RNA remodeling activities of the half-a-tetratricopeptide (HAT) protein HCF107 underlie its effects on gene expression. Proc Natl Acad Sci USA 109:5651–5656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanaoka M, Kato M, Anma M, Tanaka K (2012) SIG1, a sigma factor for the chloroplast RNA polymerase, differently associates with multiple DNA regions in the chloroplast chromosomes in vivo. Int J Mol Sci 13:12182–12194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson MR, Gray BN, Ahner BA (2012) Chloroplast transformation for engineering of photosynthesis. J Exp Bot 64:731–742

    PubMed  Google Scholar 

  • Hayashi K, Shiina T, Ishii N, Iwai K, Ishizaki Y, Morikawa K, Toyoshima Y (2003) A role of the – 35 element in the initiation of transcription at psbA promoter in tobacco plastids. Plant Cell Physiol 44:334–341

    CAS  PubMed  Google Scholar 

  • Hegeman CE, Hayes ML, Hanson MR (2005) Substrate and cofactor requirements for RNA editing of chloroplast transcripts in Arabidopsis in vitro. Plant J 42:124–132

    CAS  PubMed  Google Scholar 

  • Herrmann RG, Westhoff P, Link G (1992) Biogenesis of plastids in higher plants. Pp 275–349. In: Herrmann RG (ed) Cell Organelles. Springer, Berlin, pp 276–349

    Google Scholar 

  • Hirata N, Yonekura D, Yanagisawa S, Iba K (2004) Possible involvement of the 5′-flanking region and the 5′ UTR of plastid accD gene in NEP-dependent transcription. Plant Cell Physiol 45:176–186

    CAS  PubMed  Google Scholar 

  • Hirose T, Sugiura M (1996) Cis-acting elements and trans-acting factors for accurate translation of chloroplast psbA mRNAs: development of an in vitro translation system from tobacco chloroplasts. EMBO J 15:1687–1695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose T, Sugiura M (2004) Multiple elements required for translation of plastid atpB mRNA lacking the Shine-Dalgarno sequence. Nucleic Acids Res 32:3503–3510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose T, Kusumegi T, Sugiura M (1998) Translation of tobacco chloroplast rps14 mRNA depends on a Shine-Dalgarno-like sequence in the 5′-untranslated region but not on internal RNA editing in the coding region. FEBS Lett 430:257–260

    CAS  PubMed  Google Scholar 

  • Jarvis P, Lopez-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802

    CAS  PubMed  Google Scholar 

  • Kahlau S, Bock R (2008) Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell 20:856–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamaru K et al (2001) An Arabidopsis sigma factor (SIG2)-dependent expression of plastid-encoded tRNAs in chloroplasts. Plant Cell Physiol 42:1034–1043

    CAS  PubMed  Google Scholar 

  • Kapoor S, Sugiura M (1999) Identification of two essential sequence elements in the nonconsensus type II PatpB-290 plastid promoter by using plastid transcription extracts from cultured tobacco BY-2 cells. Plant Cell 11:1799–1810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Phil Trans R Soc B 365:729–748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klaff P, Gruissem W (1995) A 43 kD light-regulated chloroplast RNA-binding protein interacts with the psbA 5′ non-translated leader RNA. Photosynth Res 46:235–248

    CAS  PubMed  Google Scholar 

  • Kumar S et al (2012) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metabol Eng 14:19–28

    CAS  Google Scholar 

  • Kuroda H, Maliga P (2001a) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29:970–975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda H, Maliga P (2001b) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda H, Maliga P (2002) Overexpression of the clpP 5′-untranslated region in a chimeric context causes a mutant phenotype, suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. Plant Physiol 129(4):1600–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda H, Sugiura M (2014) Processing of the 5′-UTR and existence of protein factors that regulate translation of tobacco chloroplast psbN mRNA. Plant Mol Biol 86:585–593

    CAS  PubMed  Google Scholar 

  • Kuroda H, Suzuki H, Kusumegi T, Hirose T, Yukawa Y, Sugiura M (2007) Translation of psbC mRNAs starts from the downstream GUG, not the upstream AUG, and requires the extended Shine–Dalgarno sequence in tobacco chloroplasts. Plant Cell Physiol 48:1374–1378

    CAS  PubMed  Google Scholar 

  • Kwon KC, Nityanandam R, New JS, Daniell H (2013) Oral delivery of bioencapsulated exendin- 4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. Plant Biotechnol J 11:77–86

    CAS  PubMed  Google Scholar 

  • Langbecker CL, Ye G-N, Broyles DL, Duggan LL, Xu CW, Hajdukiewicz TJ, Armstrong CL, Staub JM (2004) High-frequency transformation of underdeveloped plastids in tobacco suspension cells. Plant Physiol 135:39–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SM et al (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    CAS  PubMed  Google Scholar 

  • Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J 31:171–188

    CAS  PubMed  Google Scholar 

  • Lenaghan SC, Stewart CN (2018) An automated protoplast transformation system. Meth Mol Biol (in press)

  • Liere K, Maliga P (1999) In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phage-type plastid and plant mitochondrial promoters. EMBO J 18:249–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra K et al (2016) Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells. Mol Plant 9:1464–1477

    CAS  PubMed  Google Scholar 

  • Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21:20–28

    CAS  PubMed  Google Scholar 

  • Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagi T, Kapoor S, Sugita M, Sugiura M (1998) Transcript analysis of the tobacco plastid operon rps2/atpI/H/F/A reveals the existence of a non-consensus type II (NCII) promoter upstream of the atpI coding sequence. Mol Gen Genet 257:299–307

    CAS  PubMed  Google Scholar 

  • Miyamoto T, Obokata J, Sugiura M (2002) Recognition of RNA editing sites is directed by unique proteins in chloroplasts: biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts. Mol Cell Biol 22:6726–6734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molina J et al (2014) Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol Biol Evol 31:793–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagashima A, Hanaoka M, Shikanai T, Fujiwara M, Kanamaru K, Takahashi H, Tanaka K (2004) The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana. Plant Cell Physiol 45:357–368

    CAS  PubMed  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    CAS  PubMed  Google Scholar 

  • Piatek AA, Lenaghan SC, Stewart CN (2018) Advanced editing of the nuclear and plastid genomes in plants. Plant Sci. https://doi.org/10.1016/j.plantsci.2018.02.025

    Article  PubMed  Google Scholar 

  • Plader W, Sugiura M (2003) The Shine-Dalgarno-like sequence is a negative regulatory element for translation of tobacco chloroplast rps2 mRNA: an additional mechanism for translational control in chloroplasts. Plant J 34:377–382

    CAS  PubMed  Google Scholar 

  • Pyke KA (1999) Plastid division and development. Plant Cell 11:549–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rebeiz CA, Castelfranco PA (1973) Protochlorophyll and chlorophyll biosynthesis in cell-free systems from higher plants. Annu Rev Plant Physiol 24:129–172

    CAS  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh J, Baba K, Nakahira Y, Tsunoyama Y, Shiina T, Toyoshima Y (1999) Developmental stage-specific multi-subunit plastid RNA polymerases (PEP) in wheat. Plant J 18:407–415

    CAS  PubMed  Google Scholar 

  • Saxena B, Subramaniyan M, Malhotra K, Bhavesh NS, Potlakayala SD, Kumar S (2014) Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth. J Biosci 39:33–41

    CAS  PubMed  Google Scholar 

  • Schelkunov MI, Shtratnikova VY, Nuraliev MS, Selosse M-A, Penin AA, Logacheva MD (2015) Exploring the limits for reduction of plastid genomes: a case study of the mycoheterotrophic orchids Epipogium aphyllum and Epipogium roseum. Genome Biol Evol 7:1179–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serino G, Maliga P (1998) RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme. Plant Physiol 117:1165–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiina T, Allison L, Maliga P (1998) rbcL transcript levels in tobacco plastids are independent of light: reduced dark transcription rate is compensated by increased mRNA stability. Plant Cell 10:1713–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) Plastid RNA polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244:1–68

    CAS  PubMed  Google Scholar 

  • Sriraman P, Silhavy D, Maliga P (1998) The phage-type PclpP-53 plastid promoter comprises sequences downstream of the transcription initiation site. Nucleic Acids Res 26:4874–4879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staub JM, Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6:547–553

    CAS  PubMed  Google Scholar 

  • Staub JM, Maliga P (1995) Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J 7:845–848

    CAS  PubMed  Google Scholar 

  • Stern DB, Higgs DC, Yang J (1997) Transcription and translation in chloroplasts. Trends Plant Sci 2:308–315

    Google Scholar 

  • Suzuki JY, Sriraman P, Svab Z, Maliga P (2003) Unique architecture of the plastid ribosomal RNA operon promoter recognized by the multisubunit RNA polymerase in tobacco and other higher plants. Plant Cell 15:195–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tangphatsornruang S, Birch-Machin I, Newell CA, Gray JC (2011) The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Mol Biol 76:385–396

    CAS  PubMed  Google Scholar 

  • Thum KE, Kim M, Morishige DT, Eibl C, Koop H-U, Mullet JE (2001) Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco. Plant Mol Biol 47:353–366

    CAS  PubMed  Google Scholar 

  • Valkov VT et al (2009) Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control. Plant Physiol 150:2030–2044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valkov VT et al (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5′ and 3′ regulatory sequences. Transgenic Res 20:137–151

    CAS  PubMed  Google Scholar 

  • Verhounig A, Karcher D, Bock R (2010) Inducible gene expression from the plastid genome by a synthetic riboswitch. Proc Natl Acad Sci USA 107:6204–6209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts. Nat Protoc 3:739–758

    CAS  PubMed  Google Scholar 

  • Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H (2004) Metabolic eungineering of the chloroplast genome using the Escherichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Plant Physiol 136:4048–4060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wicke S, Schneewiess GM, dePamphilis CW, Muller KF (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie G, Allison LA (2002) Sequences upstream of the YRTA core region are essential for transcription of the tobacco atpB NEP promoter in chloroplasts in vivo. Curr Gen 41:176–182

    CAS  Google Scholar 

  • Yukawa M, Kuroda H, Sugiura M (2007) A new in vitro translation system for non-radioactive assay from tobacco chloroplasts: effect of pre-mRNA processing on translation in vitro. Plant J 49:367–376

    CAS  PubMed  Google Scholar 

  • Zghidi W, Merendino L, Cottet A, Mache R, Lerbs-Mache S (2007) Nucleus-encoded plastid sigma factor SIG3 transcribes specifically the psbN gene in plastids. Nucleic Acids Res 35:455–464

    CAS  PubMed  Google Scholar 

  • Zhang J, Ruf S, Hasse C, Childs L, Scharff LB, Bock R (2012) Identification of cis-elements conferring high levels of gene expression in non-green plastids. Plant J 72:115–128

    CAS  PubMed  Google Scholar 

  • Zhelyazkova P, Sharma CM, Forstner KU, Liere K, Vogel J, Borner T (2012) The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase. Plant Cell 24:123–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Karcher D, Bock R (2007) Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant J 52:961–972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Z, Eibl C, Koop H-U (2003) The stem-loop region of the tobacco psbA 5′ UTR is an important determinant of mRNA stability and translation efficiency. Mol Genet Genom 269:340–349

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the funding by the Advanced Research Projects Agency-Energy (Award no. DE-AR000660) and the Defense Advanced Research Projects Agency (Award no. D17AC00016).

Author information

Authors and Affiliations

Authors

Contributions

HSS, AAP, SCL, and CNS all participated in writing the manuscript, which all authors have read and approved.

Corresponding authors

Correspondence to C. Neal Stewart Jr. or Scott C. Lenaghan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Mark C. Jordan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schindel, H.S., Piatek, A.A., Stewart, C.N. et al. The plastid genome as a chassis for synthetic biology-enabled metabolic engineering: players in gene expression. Plant Cell Rep 37, 1419–1429 (2018). https://doi.org/10.1007/s00299-018-2323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2323-4

Keywords

Navigation