Skip to main content
Log in

Small but powerful: function of microRNAs in plant development

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a group of endogenous noncoding small RNAs frequently 21 nucleotides long. miRNAs act as negative regulators of their target genes through sequence-specific mRNA cleavage, translational repression, or chromatin modifications. Alterations of the expression of a miRNA or its targets often result in a variety of morphological and physiological abnormalities, suggesting the strong impact of miRNAs on plant development. Here, we review the recent advances on the functional studies of plant miRNAs. We will summarize the regulatory networks of miRNAs in a series of developmental processes, including meristem development, establishment of lateral organ polarity and boundaries, vegetative and reproductive organ growth, etc. We will also conclude the conserved and species-specific roles of plant miRNAs in evolution and discuss the strategies for further elucidating the functional mechanisms of miRNAs during plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932

    Article  CAS  PubMed  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Arazi T (2012) MicroRNAs in the moss Physcomitrella patens. Plant Mol Biol 80:55–65

    Article  CAS  PubMed  Google Scholar 

  • Arif MA, Frank W, Khraiwesh B (2013) Role of RNA interference (RNAi) in the Moss Physcomitrella patens. Int J Mol Sci 14:1516–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349

    Article  CAS  PubMed  Google Scholar 

  • Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132:709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton MK (2010) Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol 341:95–113

    Article  CAS  PubMed  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell E, Creelman RA, Mullet JE (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832

    Article  CAS  PubMed  Google Scholar 

  • Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci USA 108:3424–3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322:1835–1839

    Article  CAS  PubMed  Google Scholar 

  • Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    CAS  PubMed  Google Scholar 

  • Buxdorf K, Hendelman A, Stav R, Lapidot M, Ori N, Arazi T (2010) Identification and characterization of a novel miR159 target not related to MYB in tomato. Planta 232:1009–1022

    Article  CAS  PubMed  Google Scholar 

  • Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971

    Article  CAS  PubMed  Google Scholar 

  • Cao DY, Wang J, Ju Z, Liu QQ, Li S, Tian HQ, Fu DQ, Zhu HL, Luo YB, Zhu BZ (2016) Regulations on growth and development in tomato cotyledon, flower and fruit via destruction of miR396 with short tandem target mimic. Plant Sci 247:1–12

    Article  CAS  PubMed  Google Scholar 

  • Cartolano M, Castillo R, Efremova N, Kuckenberg M, Zethof J, Gerats T, Schwarz-Sommer Z, Vandenbussche M (2007) A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet 39:901–905

    Article  CAS  PubMed  Google Scholar 

  • Casadevall R, Rodriguez RE, Debernardi JM, Palatnik JF, Casati P (2013) Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. Plant Cell 25:3570–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC (2009) Pattern formation via small RNA mobility. Genes Dev 23:549–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho EN, Zambryski PC (2011) ORGAN BOUNDARY1 defines a gene expressed at the junction between the shoot apical meristem and lateral organs. Proc Natl Acad Sci USA 108:2154–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SH, Coruh C, Axtell MJ (2012) miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. Plant Cell 24:4837–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549

    Article  CAS  PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curaba J, Singh MB, Bhalla PL (2014) miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot 65:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Das Gupta M, Nath U (2015) Divergence in patterns of leaf growth polarity is associated with the expression divergence of miR396. Plant Cell 27:2785–2799

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, Audenaert D, Van Campenhout J, Overvoorde P, Jansen L, Vanneste S, Moller B, Wilson M, Holman T, Van Isterdael G, Brunoud G, Vuylsteke M, Vernoux T, De Veylder L, Inze D, Weijers D, Bennett MJ, Beeckman T (2010) A Novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol 20:1697–1706

    Article  PubMed  CAS  Google Scholar 

  • Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF (2012) Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet 8:e1002419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants-potential as targets for crop improvement and protection. Front Plant Sci 8:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Efroni I, Blum E, Goldshmidt A, Eshed Y (2008) A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20:2293–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farage-Barhom S, Burd S, Sonego L, Mett A, Belausov E, Gidoni D, Lers A (2011) Localization of the Arabidopsis senescence- and cell death-associated BFN1 nuclease: from the ER to fragmented nuclei. Mol Plant 4:1062–1073

    Article  CAS  PubMed  Google Scholar 

  • Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DG, Stewart CN Jr, Tang Y, Wang ZY (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J 10:443–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, Luo J, Jiang D, Fan F, Zhu Y, Li S (2015) Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants 2:15196

    Article  PubMed  CAS  Google Scholar 

  • Garcia D, Collier SA, Byrne ME, Martienssen RA (2006) Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol 16:933–938

    Article  CAS  PubMed  Google Scholar 

  • Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500

    Article  CAS  PubMed  Google Scholar 

  • Gendron JM, Liu JS, Fan M, Bai MY, Wenkel S, Springer PS, Barton MK, Wang ZY (2012) Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proc Natl Acad Sci USA 109:21152–21157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacomelli JI, Weigel D, Chan RL, Manavella PA (2012) Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New Phytol 195:766–773

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Mena C, Sablowski R (2008) ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. Plant Cell 20:2059–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez L, Mongelard G, Flokova K, Pacurar DI, Novak O, Staswick P, Kowalczyk M, Pacurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewezi T, Maier TR, Nettleton D, Baum TJ (2012) The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiol 159:321–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewezi T, Piya S, Qi M, Balasubramaniam M, Rice JH, Baum TJ (2016) Arabidopsis miR827 mediates post-transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility. Plant J 88:179–192

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43:68–78

    Article  CAS  PubMed  Google Scholar 

  • Hu JY, Zhou Y, He F, Dong X, Liu LY, Coupland G, Turck F, de Meaux J (2014) miR824-regulated AGAMOUS-LIKE16 contributes to flowering time repression in Arabidopsis. Plant Cell 26:2024–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz Gutierrez-Nava M, Poethig SR (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo HQ, Wei SH, Bradford KJ (2016) DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proc Natl Acad Sci USA 113:E2199–E2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamoto M, Tagiri A (2016) MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. Plant J 85:466–477

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto M, Higo K, Takano M (2009) Circadian clock- and phytochrome-regulated Dof-like gene, Rdd1, is associated with grain size in rice. Plant Cell Environ 32:592–603

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Ding N, Fan W, Yan J, Gu Y, Tang X, Li R, Tang G (2015) Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic. Plant Sci 233:11–21

    Article  CAS  PubMed  Google Scholar 

  • Johnson CR, Millwood RJ, Tang Y, Gou J, Sykes RW, Turner GB, Davis MF, Sang Y, Wang Z-Y, Stewart CN (2017) Field-grown miR156 transgenic switchgrass reproduction, yield, global gene expression analysis, and bioconfinement. Biotechnol Biofuel 10:255

    Article  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Bio 57:19–53

    Article  CAS  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM (2007) The GIGANTEA-regulated MicroRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19:2736–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kant S, Peng M, Rothstein SJ (2011) Genetic regulation by NLA and MicroRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. Plos Genet 7:e1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36:94–104

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Ahn HJ, Chiou TJ, Ahn JH (2011) The role of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Mol cells 32:83–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Hong SH, Kim YW, Lee IH, Jun JH, Phee BK, Rupak T, Jeong H, Lee Y, Hong BS, Nam HG, Woo HR, Lim PO (2014) Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signalling in Arabidopsis. J Exp Bot 65:4023–4036

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH (2012) IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24:3590–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker MR, Laux T (2013) A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24:125

    Article  CAS  PubMed  Google Scholar 

  • Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19:473–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2010) TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22:3574–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasnikova MS, Goryunov DV, Troitsky AV, Solovyev AG, Ozerova LV, Morozov SY (2013) Peculiar evolutionary history of miR390-guided TAS3-like genes in land plants. Sci Worl 2013:924153

    Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  CAS  PubMed  Google Scholar 

  • Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA 102:9412–9417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DY, Lee J, Moon S, Park SY, An G (2007) The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J 49:64–78

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Lee DY, Cho LH, An G (2014) Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Jeon JO, Lee MM, Kim JH (2015) Genetic interaction between GROWTH-REGULATING FACTOR and CUP-SHAPED COTYLEDON in organ separation. Plant Signal Behav 10:e988071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li XY, Bian HW, Song DF, Ma SY, Han N, Wang JH, Zhu MY (2013a) Flowering time control in ornamental gloxinia (Sinningia speciosa) by manipulation of miR159 expression. Ann Bot 111:791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Peng J, Wen X, Guo H (2013b) Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25:3311–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Gao F, Xie K, Zeng X, Cao Y, Zeng J, He Z, Ren Y, Li W, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P (2016) The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J 14:2134–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61:1419–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Santi C, Jobet E, Lacut E, Kholti NE, Karlowski WM, Verdeil JL, Breitler JC, Périn C, Ko SS (2010) Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51:2119–2131

    Article  CAS  PubMed  Google Scholar 

  • Lin WY, Huang TK, Chiou TJ (2013) Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis. Plant Cell 25:4061–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litholdo CJ, Parker BL, Eamens AL, Larsen MR, Cordwell SJ, Waterhouse PM (2016) Proteomic identification of putative MicroRNA394 target genes in Arabidopsis thaliana identifies major latex protein family members critical for normal development. Mol Cell Proteom 15:2033–2047

    Article  CAS  Google Scholar 

  • Liu X, Huang J, Wang Y, Khanna K, Xie Z, Owen HA, Zhao D (2010) The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J 62:416–428

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Guo Z, Li L (2013) Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380:133–144

    Article  CAS  PubMed  Google Scholar 

  • Mahonen AP, ten Tusscher K, Siligato R, Smetana O, Diaz-Trivino S, Salojarvi J, Wachsman G, Prasad K, Heidstra R, Scheres B (2014) PLETHORA gradient formation mechanism separates auxin responses. Nature 515:125–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matallana-Ramirez LP, Rauf M, Farage-Barhom S, Dortay H, Xue GP, Droge-Laser W, Lers A, Balazadeh S, Mueller-Roeber B (2013) NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis. Mol Plant 6:1438–1452

    Article  PubMed  CAS  Google Scholar 

  • Mathieu J, Yant LJ, Murdter F, Kuttner F, Schmid M (2009) Repression of Flowering by the miR172 Target SMZ. Plos Biol 7:e1000148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Ma X, Chen D, Wu P, Chen M (2010) MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun 393:345–349

    Article  CAS  PubMed  Google Scholar 

  • Merelo P, Ram H, Caggiano MP, Ohno C, Ott F, Straub D, Graeff M, Cho SK, Yang SW, Wenkel S, Heisler MG (2016) Regulation of MIR165/166 by class II and class III homeodomain leucine zipper proteins establishes leaf polarity. Proc Natl Acad Sci USA 113:11973–11978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  CAS  PubMed  Google Scholar 

  • Mlotshwa S, Yang Z, Kim Y, Chen X (2006) Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Mol Biol 61:781–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141

    Article  CAS  PubMed  Google Scholar 

  • Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106:22534–22539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen GX, Sameri M, Tagiri A, Honda I, Watanabe Y, Kanamori H, Wicker T, Stein N, Nagamura Y, Matsumoto T, Komatsuda T (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495

    Article  CAS  PubMed  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nizampatnam NR, Schreier SJ, Damodaran S, Adhikari S, Subramanian S (2015) microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. Plant J 84:140–153

    Article  CAS  PubMed  Google Scholar 

  • Nogueira FTS, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MCP (2009) Regulation of small RNA accumulation in the maize shoot apex. Plos Genet 5:e1000320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ochando I, Jover-Gil S, Ripoll JJ, Candela H, Vera A, Ponce MR, Martinez-Laborda A, Micol JL (2006) Mutations in the microRNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in Arabidopsis. Plant Physiol 141:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791

    Article  CAS  PubMed  Google Scholar 

  • Osborne DJ (1959) Control of leaf senescence by auxins. Nature 183:1459–1460

    Article  CAS  PubMed  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102:3691–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19:374–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284:17897–17901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preston JC, Hileman LC (2013) Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci 4:80

    PubMed  PubMed Central  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu K, Li Z, Yang Z, Chen J, Wu S, Zhu X, Gao S, Gao J, Ren G, Kuai B, Zhou X (2015) EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet 11:e1005399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raman S, Greb T, Peaucelle A, Blein T, Laufs P, Theres K (2008) Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J 55:65–76

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Mecchia MA, Sabatini M, Cools T, De Veylder L, Benfey PN, Palatnik JF (2015) MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell 27:3354–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotech 32:93–98

    Article  CAS  PubMed  Google Scholar 

  • Ru P, Xu L, Ma H, Huang H (2006) Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 16:457–465

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Somoza I, Zhou CM, Confraria A, Martinho C, von Born P, Baena-Gonzalez E, Wang JW, Weigel D (2014) Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes. Curr Biol 24:2714–2719

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130:6001–6012

    Article  CAS  PubMed  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:e230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schommer C, Debernardi JM, Bresso EG, Rodriguez RE, Palatnik JF (2014) Repression of cell proliferation by miR319-regulated TCP4. Mol Plant 7:1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M (2009) Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol 50:2133–2145

    Article  CAS  PubMed  Google Scholar 

  • Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135

    CAS  PubMed  Google Scholar 

  • Takeda S, Hanano K, Kariya A, Shimizu S, Zhao L, Matsui M, Tasaka M, Aida M (2011) CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOG gene family, in shoot organ boundary cells. Plant J 66:1066–1077

    Article  CAS  PubMed  Google Scholar 

  • Teotia S, Tang G (2015) To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant 8:359–377

    Article  CAS  PubMed  Google Scholar 

  • Tian CE, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto KT (2004) Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J 40:333–343

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, Watanabe R, Nishizawa NK, Gomi K, Shimada A, Kitano H, Ashikari M, Matsuoka M (2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Guo HS (2015) Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by MicroRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis. Plant Cell 27:574–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zhou Y, Gilmer S, Whitwill S, Fowke LC (2000) Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. Plant J 24:613–623

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Itaya A, Zhong X, Wu Y, Zhang J, van der Knaap E, Olmstead R, Qi Y, Ding B (2011) Function and evolution of a MicroRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering RNAs in tomato reproductive growth. Plant Cell 23:3185–3203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Willmann MR, Poethig RS (2007) Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol 10:503–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollmann H, Mica E, Todesco M, Long JA, Weigel D (2010) On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137:3633–3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Cao Y, Yang R, Qi T, Hang Y, Lin H, Zhou G, Wang ZY, Fu C (2016) Switchgrass SBP-box transcription factors PvSPL1 and 2 function redundantly to initiate side tillers and affect biomass yield of energy crop. Biotechnol Biofuel 9:101

    Article  CAS  Google Scholar 

  • Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol 142:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu MY, Zhang L, Li WW, Hu XL, Wang MB, Fan YL, Zhang CY, Wang L (2014) Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. J Exp Bot 65:89–101

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D (2009) The MicroRNA-Regulated SBP-Box Transcription Factor SPL3 Is a Direct Upstream Activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17:268–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G (2012) Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell 24:415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JH, Han SJ, Yoon EK, Lee WS (2006) ‘Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells’. Nucleic Acids Res 34:1892–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006a) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006b) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Zou Z, Zhang JH, Zhang YY, Han QQ, Hu TX, Xu XG, Liu H, Li HX, Ye ZB (2011) Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. Febs Lett 585:435–439

    Article  CAS  PubMed  Google Scholar 

  • Zheng QL, Liu JG, Golff BM, Dinkins RD, Zhu HY (2016) Genetic manipulation of miR156 for improvement of biomass production and forage quality in red clover. Crop Sci 56:1199–1205

    Article  CAS  Google Scholar 

  • Zhou YY, Honda M, Zhu HL, Zhang ZH, Guo XW, Li TH, Li ZH, Peng X, Nakajima K, Duan LS, Zhang XR (2015) Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance. Cell Rep 10:1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA (2009) Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). Bmc Plant Biol 9(1):149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu HL, Hu FQ, Wang RH, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang XR (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in Tang lab and Huang lab is supported by the Guangdong Innovation Research Team Fund (2014ZT05S078), National Natural Science Foundation of China (31571252), NSF Grant (IOS-1340001), and the Natural Science Startup Foundation of Shenzhen University (2016101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengbo Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yu, H., Tang, G. et al. Small but powerful: function of microRNAs in plant development. Plant Cell Rep 37, 515–528 (2018). https://doi.org/10.1007/s00299-017-2246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2246-5

Keywords

Navigation