Skip to main content
Log in

Inheritance in doubled-diploid clementine and comparative study with SDR unreduced gametes of diploid clementine

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Tetraploid clementine displays mainly tetrasomic inheritance. Genetic structures of 2n SDR and 2 × gametes from DD clementine are complementary and will guides triploids citrus breeding strategies.

Abstract

Triploid breeding is developed worldwide to create new seedless cultivars. Citrus triploid hybrids can be recovered from 2x × 2x sexual hybridizations as a consequence of the formation of unreduced gametes (2n), or from 4x × 2x interploid hybridizations in which tetraploid parents used are most often doubled-diploid (DD). Here we have analyzed the inheritance in doubled-diploid clementine and compared the genetic structures of gametes of DD clementine with SDR unreduced gametes of diploid clementine. Parental heterozygosity restitution (PHR) with DD parents depends on the rate of preferential chromosome pairing and thus the proportion of disomic versus tetrasomic segregations. Doubled-diploid clementine largely exhibited tetrasomic segregation. However, three linkage groups had intermediate segregation and one had a tendency for disomy. Significant doubled reduction rates (DR) rates were observed in six of the nine LGs. Differences of PHR between 2n SDR and 2x DD gametes were highest in the centromeric region and progressively decreased toward the distal regions where they were not significant. Over all markers, PHR was lower (two-thirds) in SDR 2n gametes than in DD-derived diploid gametes. The two strategies appear complementary in terms of genotypic variability. Interploid 4x × 2x hybridization is potentially more efficient for developing new cultivars that are phenotypically closer to the diploid parent of the DD than sexual hybridization through SDR 2n gametes. Conversely, 2x × 2x triploidisation has the potential to produce novel products with characteristics for market segmentation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CIs:

Confidence Intervals

DD:

Doubled-Diploid

DR:

Double Reduction rate

FDR:

First Division Restitution

FRET:

Förster Resonance Energy Transfer

LG:

Linkage Group

LOD:

Log-odds ratio

MAC-PR:

Microsatellite DNA Allele Counting-Peak Ratio

PHR:

Parental Heterozygosity Restitution

PPP:

Referential Pairing

SDR:

Second-Division Restitution

SNP:

Single Nucleotide Polymorphism

SSR:

Simple Sequence Repeat

References

  • Aleza P, Juárez J, Ollitrault P, Navarro L (2009) Production of tetraploid plants of non-apomictic citrus genotypes. Plant Cell Rep 28:1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Juárez J, Cuenca J, Ollitrault P, Navarro L (2010) Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x × 2x sexual hybridization and its application to extensive breeding programs. Plant Cell Rep 29:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Froelicher Y, Schwarz S, Agustí M et al (2011) Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Ann Bot 108(1):37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleza P, Juárez J, Hernández M, Ollitrault P, Navarro L (2012a) Implementation of extensive citrus triploid breeding programs based on 4x × 2x sexual hybridisations. Tree Genet Genomes. doi:10.1007/s11295-012-0515-6

    Google Scholar 

  • Aleza P, Cuenca J, Juárez J, Navarro L, Ollitrault P (2012b) Mechanism of 2n gametes formation and centromere mapping in citrus. XII International Citrus Congress 19–23 December 2012 Valence, Spain

  • Aleza P, Cuenca J, Hernández M, Juárez J, Navarro L, Ollitrault P (2015) Genetic mapping of centromeres of the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes. BMC Plant Biol 15:80. doi:10.1186/s12870-015-0464-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Butruille DV, Boiteux LS (2000) Selection-mutation balance in polysomic tetraploids: impact of double reduction and gametophytic selection on the frequency and subchromosomal localization of deleterious mutations. Proc Natl Acad Sci USA 97(12):6608–6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carputo C, Camadro EL, Peloquin SJ (2003) The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing solanums. Genet 163:287–294

    CAS  Google Scholar 

  • Cameron JW, Burnett RH (1978) Use of sexual tetraploid seed parents for production of triploid citrus hybrids. Hort Sci 13:167–169

    Google Scholar 

  • Cameron JW, Frost HB (1968) Genetics, breeding, and nucellar embryony. In: Reuther W, Batchelor LD, Webber HJ (eds) The citrus industry, vol 2. University of California, Division of Agricultural Science, Berkeley, pp 325–370

    Google Scholar 

  • David JL, Boudec P, Gallais A. (1995) Quantitative genetics of 4x-2x hybrid populations with First-Division Restitution and 2nd-Division Restitution 2n gametes produced by diploid parents. Genet 13

  • Chen CL, Guo WW, Yi HL, Deng XX (2004) Cytogenetic analysis of two interspecific Citrus allotetraploid somatic hybrids and their diploid fusion parents. Plant Breed 123:332–337

    Article  Google Scholar 

  • Chester M, Gallagher J, Symonds V, Cruz Da Silva A, Mavrodiev E, Leitch A et al (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci USA 109:1176–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenca J, Froelicher Y, Aleza P, Juarez J et al (2011) Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2nmegagametophyte production and partial chiasma interference in mandarin cv ‘Fortune’. Heredity 107:462–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenca J, Aleza P, Juárez J, Navarro L, Ollitrault P (2013) Assignment of SNP allelic configuration in polyploids using competitive allele-specific PCR: application to citrus triploid progeny. Ann Bot 111:731–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenca J, Aleza P, Juárez J, Froelicher Y, García-Lor A, Navarro L, Ollitrault P (2015) Maximum-likelihood method based on parental heterozygosity restitution of centromeric loci identifies Second Division Restitution (SDR) as the predominant mechanism leading to 2n megagametophytes in Citrus reticulata. Sci Rep 5:9897. doi:10.1038/srep09897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuppen E (2007) Genotyping by allele-specific amplification (KASPar). Cold Spring Harbor Protocols: 172–173. PubMed: 21357174

  • Curk F, Ancillo G, Garcia-Lor A, Luro F, Perrier X, Jacquemoud-Collet JP, Navarro L, Ollitrault P (2014) Next generation haplotyping to decipher nuclear genomic interspecific admixture in Citrus species: analysis of chromosome 2. BMC Genet 15:152. doi:10.1186/s12863-014-0152-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Curk F, Ancillo G, Ollitrault F, Perrier X, Jacquemoud-Collet JP, Garcia-Lor A, Navarro L (2015) Ollitrault P (2015) Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties. PLoS One 10(5):e0125628. doi:10.1371/journal.pone.0125628.eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Z, Gentile A, Nicolosi E, Continella G, Tribulato E (1996) Parentage determination of some citrus hybrids by molecular markers. Proc Int Soc Citricul 2:849–854

    Google Scholar 

  • Douches DS, Quiros CF (1988) Genetic strategies to determine the mode of 2n egg formation in diploid potatoes. Euphytica 38(3):247–260

    Article  Google Scholar 

  • Esen A, Soost RK (1971) Unexpected triploids in citrus: their origin, identification and possible use. J Hered 62:329–333

    Google Scholar 

  • Esen A, Soost RK (1973) Precocious development and germination of spontaneous triploid seeds in citrus. J Hered 64:147–154

    Google Scholar 

  • Esen A, Soost RK, Geraci G (1978) Seed set, size and development after 4x–2x and 4x–4x crosses in Citrus. Euphytica 27:283–293

    Article  Google Scholar 

  • Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Theor Appl Genet 109:402–408

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014) http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor. Accessed 29 Sep 2015

  • Fatta Del Bosco S, Tusa N, Conicella C (1999) Microsporogenesis in a Citrus interspecific tetraploid somatic hybrid and its fusion parents. Heredity 83:373–377

    Article  Google Scholar 

  • Froelicher Y, Dambier D, Bassene JB, CostantinoG Lotfy S, Didout C, Beaumont V, Brottier P, Risterucci AM, Luro F, Ollitrault P (2008) Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol Ecol Resour 8(1):119–122

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Lor A, Luro F, Navarro L, Ollitrault P (2012) Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies. Mol Genet Gen 287(1):77–94

    Article  CAS  Google Scholar 

  • Geraci G, Esen A, Soost RK (1975) Triploid progenies from 2x–2x crosses of citrus cultivars. J Hered 66:177–178

    Google Scholar 

  • Grosser WJ, Gmitter FG (2011) Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell Tissue Organ Cult 104:343–357

    Article  CAS  Google Scholar 

  • Grosser JW, Ollitrault P, Olivares O (2000) Somatic hybridization in Citrus: an effective tool to facilitate variety improvement. In Vitro Cell Dev Biol Plant 36:434–449

    Article  Google Scholar 

  • Grosser JW, Hyum JA, Calovic M, Dong HL, Chen C, Vasconcellos M, Gmitter FG (2010) Production of new allotetraploid and autotetraploid citrus breeding parents: focus on Zipperskinmandarins. Hort Sci 45(8):1160–1163

    Google Scholar 

  • Haynes KG, Douches DS (1993) Estimation of the coefficient of double reduction in the cultivated tetraploidpotato. Theor Appl Genet 85:857–862

    CAS  PubMed  Google Scholar 

  • Hutten RCB, Scholberg EJMM, Huigen DJ, Hermsen JGTh, Jacobsen E (1994) Analysis of dihaploid induction and production ability and seed parent pollinator interaction in potato. Euphytica 72:61–64

  • Kamiri M, Stift M, Srairi I, Costantino G, El Moussadik A, Hmyene A, Bakry F, Ollitrault P, Froelicher Y (2011) Evidence for non-disomic inheritance in a Citrus interspecific tetraploid somatic hybrid between C. reticulata and C. limon using SSR markers and cytogenetic analysis. Plant Cell Rep 30(8):1415–1425

    Article  CAS  PubMed  Google Scholar 

  • Kidane-Mariam HM, Peloquin SJ (1975) The effect of direction of hybridization (4x X 2x vs. 2x X 4x) on yield on cultivated potatoes. Am Potato J 51:330–336

    Article  Google Scholar 

  • Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotidemicrosatellites into a linkage map of Citrus. Theor Appl Genet 94(5):701–706

    Article  CAS  Google Scholar 

  • Krug CA (1943) Chromosome numbers in the subfamily Aurantioideae with special reference to the genus Citrus. Bot Gaz 48:602–611

    Article  Google Scholar 

  • Lee LS (1988) Citrus polyploidy. Origins and potential for cultivar improvement. Aust J Agric Res 39:735–747

    Article  Google Scholar 

  • Luro F, Maddy F, Ollitrault P, Rist D (2000) Identification of 2n gamete parental origin and mode of nuclear restution of spontaneous triploid citrus hybrids. In: Proceedings of 9th International Citrus Congress. International Society of Citriculture, Orlando 168–169

  • Luro F, Maddy F, Jacquemond C, Froelicher Y, Morillon R, Rist D, Ollitrault P (2004) Identification and evaluation of diplogyny in clementine (Citrus clementina) for use in breeding. Acta Horticulturae 663(2):841–848

    Article  Google Scholar 

  • Mather K (1935) Segregation and linkage in autotetraploids. J Genet 32:287–314

    Article  Google Scholar 

  • Mather K (1936) Segregation and linkage in autotetraploids. J Gen 32:287–314

    Article  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2013) Statistical challenges for population genetics of polyploids. The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity 110:131–137. doi:10.1038/hdy.2012.80

    Article  CAS  PubMed  Google Scholar 

  • Mendiburu AO, Peloquin SJ (1977a) The significance of 2n gametes in potato breeding. Theor Appl Genet 49:53–61

    Article  CAS  PubMed  Google Scholar 

  • Mendiburu AO, Peloquin SJ (1977b) Bilateral sexual polyploidization in potatoes. Euphytica 26:573–583

    Article  Google Scholar 

  • Mok DWS, Peloquin SJ (1975) The inheritance of three mechanisms of diplandroid (2n-pollen) formation in diploid potatoes. Heredity 35:295–302

    Article  Google Scholar 

  • Muller HJ (1914) A new mode of segregation in Gregory´s tetraploid primulas. Am Nat 48:508–512

    Article  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A, Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Ollitrault P, Dambier D, Luro F, Froelicher Y (2008) Ploidymanipulation for breeding seedless triploid citrus. Plant Breed Rev 20:323–354

    Google Scholar 

  • Ollitrault F, Terol J, Pina JA, Navarro L, Talon M, Ollitrault P (2010) Development of SSRmarkers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus. Am J Bot 97(11):e124–e129

    Article  CAS  PubMed  Google Scholar 

  • Ollitrault P, Terol J, Garcia-Lor A, Berard A, Chauveau A, Froelicher Y, Belzile C, Morillon R, Navarro L, Brunel D, Talon M (2012a) SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genom 13:13

    Article  CAS  Google Scholar 

  • Ollitrault P, Terol J, Chen C, Federici C, Lotfy S et al (2012b) A reference genetic map of C. clementine Hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genom 13:593

    Article  CAS  Google Scholar 

  • Ollitrault F, Terol J, Alonso Martin A, Pina JA, Navarro L, Talon M, Ollitrault P (2012c) Development of InDel markers from Citrus clementina (Rutaceae) BAC-end sequences and interspecific transferability in Citrus. Am J Bot 99(7):e268–e273

    Article  PubMed  Google Scholar 

  • Peloquin SJ, Boiteux LS, Carputo D (1999) Meiotic mutants in potato: valuable variants. Genetics 153:1493–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrier X, Jacquemoud-Collet J (2006) DARwin software. http://darwin.cirad.fr/darwin 5.0.158. Accessed 01 Apr 2016

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    Article  CAS  Google Scholar 

  • Starrantino A, Recupero G (1981) Citrus hybrids obtained in vitro from 2x females X 4x males. In: Proceedings 4th International Citrus Congress. International Society of Citriculture, Tokyo, Japan. 1:31–32

  • Stift M, Berenos C, Kuperus P, Van Tienderen P (2008) Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: a general procedure applied to Rorippa (Yellow Cress) microsatellite data. Genetics 179:2113–2123

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch JE (1962) Linkage in autotetraploid maize. Genetics 47:367–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu AG, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Takita MA, Labadie K, Poulain J, Couloux A, Jabbari K, Cattonaro F, Del Fabbro C, Pinosio S, Zuccolo A, Chapman J, Grimwood J, Tadeo FR, Estornell LH, Muñoz-Sanz JV, Ibañez V, Herrero-Ortega A, Aleza P, Pérez´Pérez J, Ramón D, Brunel D, Luro F, Chen C, Farmerie WG, Desany B, Kodira C, Mohiuddin M, Harkins T, Fredrikson K, Burns P, Lomsadze A, Borodovsky M, Reforgiato G, Freitas-Astúa J, Quetier F, Navarro L, Roose M, Wincker P, Schmutz J, Morgante M, Machado MA, Talon M, Jaillon O, Ollitrault P, Gmitter F, Rokhsar D (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol. doi:10.1038/nbt.2906

    Google Scholar 

  • Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang Z, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan Y (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant AGL2011-26490, from the Ministry of ‘Economía y Competividad’, Fondo Europeo de Desarrollo Regional (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Navarro or P. Ollitrault.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicting interests.

Additional information

Communicated by W. Harwood.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleza, P., Cuenca, J., Juárez, J. et al. Inheritance in doubled-diploid clementine and comparative study with SDR unreduced gametes of diploid clementine. Plant Cell Rep 35, 1573–1586 (2016). https://doi.org/10.1007/s00299-016-1972-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-016-1972-4

Keywords

Navigation