Skip to main content
Log in

Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Under heavy-metal stress, CsHMA3 overexpressing transgenic Camelina plants displayed not only a better quality, but also a higher quantity of unsaturated fatty acids in their seeds compared with wild type.

Abstract

Camelina sativa L. belongs to the Brassicaceae family and is frequently used as a natural vegetable oil source, as its seeds contain a high content of fatty acids. In this study, we observed that, when subjected to heavy metals (Cd, Co, Zn and Pb), the seeds of CsHMA3 (Heavy-Metal P1B-ATPase 3) transgenic lines retained their original golden yellow color and smooth outline, unlike wild-type seeds. Furthermore, we investigated the fatty acids content and composition of wild type and CsHMA3 transgenic lines after heavy metal treatments compared to the control. The results showed higher total fatty acid amounts in seeds of CsHMA3 transgenic lines compared with those in wild-type seeds under heavy-metal stresses. In addition, the compositions of unsaturated fatty acids—especially 18:1 (oleic acid), 18:2 (linoleic acid; only in case of Co treatment), 18:3 (linolenic acid) and 20:1 (eicosenoic acid)—in CsHMA3 overexpressing transgenic lines treated with heavy metals were higher than those of wild-type seeds under the same conditions. Furthermore, reactive oxygen species (ROS) contents in wild-type leaves and roots when treated with heavy metal were higher than in CsHMA3 overexpressing transgenic lines. These results indicate that overexpression of CsHMA3 affects fatty acid composition and content—factors that are responsible for the fuel properties of biodiesel—and can alleviate ROS accumulation caused by heavy-metal stresses in Camelina. Due to these factors, we propose that CsHMA3 transgenic Camelina can be used for phytoremediation of metal-contaminated soil as well as for oil production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAG:

Diacylglycerol

ER:

Endoplasmic reticulum

HMA:

Heavy metal ATPase

FAD:

Fatty acid desaturases

FAMEs:

Fatty acid methyl esters

LPA:

Lysophosphatidate

PA:

Phosphatidate

ROS:

Reactive oxygen species

References

  • Alcántara E, Romera FJ, Cañete M, De la Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe(lll) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898

    Article  Google Scholar 

  • Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaïbi W, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotox Environ Safe 73:1004–1011

    Article  CAS  Google Scholar 

  • Bernardo A, Howard-Hildige R, O’Connell A, Nichol R, Ryan J, Rice B, Roche E, Leahy JJ (2003) Camelina oil as a fuel for diesel transport engines. Ind Crop Prod 17:191–197

    Article  CAS  Google Scholar 

  • Bidar G, Verdin A, Garçon G, Pruvot C, Laruelle F, Grandmougin-Ferjani A, Douay F, Shirali P (2008) Changes in fatty acid composition and content of two plants (Lolium perenne and Trifolium repens) grown during 6 and 18 months in a metal (Pb, Cd, Zn) contaminated field. Water Air Soil Pollut 192:281–291

    Article  CAS  Google Scholar 

  • Braconi D, Bernardini G, Santucci A (2011) Linking protein oxidation to environmental pollutants: redox proteomic approaches. J Proteomics 74:2324–2337

    Article  CAS  PubMed  Google Scholar 

  • Browse J, McConn M, James D Jr, Miquel M (1993) Mutants of Arabidopsis deficient in the synthesis of alpha-linolenate: biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J Biol Chem 268:16345–16351

    CAS  PubMed  Google Scholar 

  • Carrier P, Baryla A, Havaux M (2003) Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216:939–950

    CAS  PubMed  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Devi SR, Prasad M (1999) Membrane lipid alterations in heavy metal exposed plants. In: Heavy metal stress in plants. Springer, pp 99–116

  • Eastmond PJ, Quettier AL, Kroon JT, Craddock C, Adams N, Slabas AR (2010) Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. Plant Cell 22:2796–2811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Falcone DL, Gibson S, Lemieux B, Somerville C (1994) Identification of a gene that complements an Arabidopsis mutant deficient in chloroplast omega 6 desaturase activity. Plant Physiol 106(4):453–1459

    Article  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Gao J, Ajjawi I, Manoli A, Sawin A, Xu C, Froehlich JE, Last RL, Benning C (2009) FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J 60:832–839

    Article  CAS  PubMed  Google Scholar 

  • Gibson S, Arondel V, Iba K, Somerville C (1994) Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol 106(4):1615–1621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall J, Williams LE (2003a) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Hall JL, Williams LE (2003b) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37

    Article  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jemal F, Zarrouk M, Ghorbal MH (2000) Effect of cadmium on lipid composition of pepper. Biochem Soc Trans 28:907–910

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU, Suh MC (2011) Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep 30(10):1881–1892

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Koh C, Nixon J, Bollina V, Clarke W, Tuteja R, Spillane C, Robinson S, Links M, Clarke C, Higgins E, Huebert T, Sharpe A, Parkin I (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HU, Huang AHC (2004) Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol 134:1206–1216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HU, Li Y, Huang AH (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17:1073–1089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684

    Article  CAS  Google Scholar 

  • Kunst L, Browse J, Somerville C (1988) Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity. Proc Natl Acad Sci USA 85:4143–4147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lange H, Shropshire W Jr, Mohr H (1971) An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol 47:649–655

    Article  PubMed Central  PubMed  Google Scholar 

  • Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ (2001) DGAT2 is a new diacylglycerol acyltransferase gene family—purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem 276:38862–38869

    Article  CAS  PubMed  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson M, Arondel V, Bates P, Baud S, Bird D, DeBono A, Durrett T, Franke R, Graham I, Katayama K, Kelly A, Larson T, Markham J, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid K, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161. doi:10.1199/tab.0161

    Article  PubMed Central  PubMed  Google Scholar 

  • Misra A, Khan K, Niranjan A, Nath P, Sane VA (2013) Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana. Phytochemistry 96:37–45

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  PubMed  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nouairi I, Ammar WB, Youssef NB, Daoud DBM, Ghorbal MH, Zarrouk M (2006a) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519

    Article  CAS  Google Scholar 

  • Nouairi I, Ghnaya T, Ben Youssef N, Zarrouk M, Habib Ghorbel M (2006b) Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum under cadmium stress. J Plant Physiol 163:1198–1202

    Article  CAS  PubMed  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park W, Ahn S-J (2014) How do heavy metal ATPases contribute to hyperaccumulation? J Plant Nutr Soil Sci 177:121–127

    Article  CAS  Google Scholar 

  • Park W, Han K-H, Ahn S-J (2012) Differences in root-to-shoot Cd and Zn translocation and by HMA3 and 4 could influence chlorophyll and anthocyanin content in Arabidopsis Ws and Col-0 ecotypes under excess metals. Soil Sci Plant Nutr 58:334–348

    Article  CAS  Google Scholar 

  • Park W, Feng Y, Ahn S-J (2014) Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa. Biotechnol Biofuels 7:96

    Article  PubMed Central  PubMed  Google Scholar 

  • Putnam D, Budin J, Field L, Breene W (1993) Camelina: a promising low-input oilseed. In: Janick J, Simon JE (eds). Wiley, New York, pp 314–322

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Rodríguez MF, Sánchez-García A, Salas JJ, Garcés R, Martínez-Force E (2013) Characterization of the morphological changes and fatty acid profile of developing Camelina sativa seeds. Ind Crop Prod 50:673–679

    Article  Google Scholar 

  • Romero-Puertas M, Palma J, Gómez M, Del Rio L, Sandalio L (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Sandalio L, Dalurzo H, Gomez M, Romero-Puertas M, Del Rio L (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sharma P, Dubey R (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Stewart AJ, Chapman W, Jenkins GI, Graham I, Martin T, Crozier A (2001) The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ 24:1189–1197

    Article  CAS  Google Scholar 

  • Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP (1985) The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298

    Article  CAS  Google Scholar 

  • Thompson GA Jr (1992) The regulation of membrane lipid metabolism. CRC Press, Boca Raton

    Google Scholar 

  • Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M, Kaskie M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862

    Article  CAS  PubMed  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977

    Article  CAS  PubMed  Google Scholar 

  • Vernon LP (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 32:1144–1150

    Article  CAS  Google Scholar 

  • Vollmann J, Damboeck A, Eckl A, Schrems H, Ruckenbauer P (1996) Improvement of Camelina sativa, an underexploited oilseed. Prog New Crops ASHS Press Alex VA 1:357–362

    Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK, Hall J (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta Biomembr 1465:104–126

    Article  CAS  Google Scholar 

  • Zheng ZF, Xia Q, Dauk M, Shen WY, Selvaraj G, Zou JT (2003) Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15:1872–1887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crops Prod 6:113–119

    Article  Google Scholar 

  • Zubr J, Matthaus B (2002) Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind Crops Prod 15:155–162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, Grant #: PJ01108102), Rural Development Administration, Republic of Korea. This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A6A3A01059173).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Ju Ahn.

Additional information

Communicated by H. Ebinuma.

W. Park and Y. Feng equally contributed to experimental conception, design, and writing of the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

299_2015_1801_MOESM1_ESM.docx

Figure S1. Effect of Cd, Co, Zn and Pb concentration on height of wild type Camelina in soil condition. Seeds were germinated and grown in soil condition containing different concentrations of heavy metals for 60 days. Asterisks in the figure indicate significant different from control at *P < 0.05, by Dunnett’s test. Figure S2. Fatty acid composition (a) and content (b) in leaves of wild-type and CsHMA3 overexpressing lines. Plants were treated with 50 μM Cd, 100 μM Co, 350 μM Zn and 350 μM Pb, respectively, for 7 days. Asterisks in the figure indicate a significant difference from wild type at *P < 0.05, by Dunnett’s test. Figure S3. Fatty acid composition (a) and content (b) roots of wild type and CsHMA3 overexpressing lines. Plants were treated with 50 μM Cd, 100 μM Co, 350 μM Zn and 350 μM Pb, respectively, for 7 days. Asterisks in the figure indicate a significant difference from wild type at *P < 0.05, by Dunnett’s test. (DOCX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, W., Feng, Y., Kim, H. et al. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress. Plant Cell Rep 34, 1489–1498 (2015). https://doi.org/10.1007/s00299-015-1801-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1801-1

Keywords

Navigation