Skip to main content
Log in

Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Microsomal delta-12 fatty acid desaturase (FAD2) functions in the first committed step of the biosynthesis of polyunsaturated fatty acids via the desaturation of oleic acid to linoleic acid. In this study, two FAD2 genes were identified through genome-wide analysis of Brassica rapa. One BrFAD2-1 gene harbors functional sequence information, but another BrFAD2-2 gene has mutations that generated a premature stop codon, rendering it nonfunctional. From a database of 120,000 B. rapa expressed sequence tags, we determined that all sequences coding for FAD2 corresponded to the BrFAD2-1 gene. The BrFAD2-1 protein was shown to share high sequence homology (71–99%) with FAD2 proteins from other plant species. An intron in the 5′-untranslated region and three histidine boxes in the protein, which are characteristic of plant FAD2 genes, have been well-conserved. BrFAD2-1 transcripts were detected in various organs of B. rapa. When a pBrFAD2-1:mRFP construct was introduced into tobacco epidermal cells, the fluorescent signal was noted in the endoplasmic reticulum. Ectopic expression of BrFAD2-1:mRFP complemented the Arabidopsis fad2-2 mutant. Finally, transgenic Korean rapeseed Tammi containing high oleic acid contents (78 mol%) was developed via the expression of the BrFAD2-1 gene in an antisense orientation. The data demonstrate that B. rapa harbors only one functional FAD2 that can be utilized for the development of the high-oleic acid Korean rapeseed cultivar Tammi, which might be useful for both human consumption and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An G (1987) Binary Ti vector for plant transformation and promoter analysis. Methods Enzymol 153:292–305

    Article  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris, Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ, Paddock T, Salas JJ, Savage L, Milcamps A, Mhaske VB, Cho Y, Ohlrogge JB (2003) Arabidopsis gene involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  PubMed  CAS  Google Scholar 

  • Bhalla PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3:181–189

    Article  PubMed  CAS  Google Scholar 

  • Browse J, McConn M, JrD James, Miquel M (1993) Mutants of Arabidopsis deficient in the synthesis of α-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J Biol Chem 268:16345–16351

    PubMed  CAS  Google Scholar 

  • Cheung F, Trick M, Drou N, Lim YP, Park J-Y, Kwon S-J, Kim J-A, Scott R, Pires JC, Paterson AH, Town C, Bancroft I (2009) Comparative analysis between homologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    Article  PubMed  CAS  Google Scholar 

  • Durrett TP, Benning C, Ohlrogge JB (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607

    Article  PubMed  CAS  Google Scholar 

  • Dyer JM, Mullen RT (2001) Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett 494:44–47

    Article  PubMed  CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  PubMed  CAS  Google Scholar 

  • Heppard EP, Kinney AJ, Stecca KL, Miao G-H (1996) Developmental and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans. Plant Physiol 110:311–319

    Article  PubMed  CAS  Google Scholar 

  • Jaworski J, Cahoon EB (2003) Industrial oils from transgenic plants. Curr Opin Plant Biol 6:178–184

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO J 6:3901–3907

    CAS  Google Scholar 

  • Jin U-H, Lee J-W, Chung Y-S, Lee J-H, Yi Y-B, Kim Y-K, Hyung N-I, Pyee J-h, Chung C-H (2001) Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161:935–941

    Article  CAS  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Kim H, Shin JS, Chung C-H, Ohlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal delta-12 fatty acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Mol Gen Genomics 276:351–368

    Article  CAS  Google Scholar 

  • Kim MJ, Kim J-K, Shin JS, Suh MC (2007) The SebHLH transcription factor mediates trans-activation of the SeFAD2 gene promoter through binding to E- and G-box elements. Plant Mol Biol 64:453–466

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Lee H, Go YS, Roh KH, Lee Y-H, Jang Y-S, Suh MC (2010a) Development of herbicide-tolerant Korean rapeseed (Brassica napus L.) cultivars. Kor J Plant Biotechnol 37:319–326

    Article  Google Scholar 

  • Kim MJ, Go YS, Lee SB, Kim YS, Shin JS, Min MK, Hwang I, Suh MC (2010b) Seed-expressed casein kinase I acts as a positive regulator of the SeFAD2 promoter via phosphorylation of the SebHLH transcription factor. Plant Mol Biol 73:425–437

    Article  PubMed  CAS  Google Scholar 

  • Kinney AJ, Cahoon EB, Hitz WD (2002) Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans 30:1099–1103

    Article  PubMed  CAS  Google Scholar 

  • Kridl JC, McCarter DW, Rose RE, Scherer DE, Knutzon DS, Radke SE, Knauf VC (1991) Isolation and characterization of an expressed napin gene from Brassica rapa. Seed Sci Res 1:209–219

    Article  CAS  Google Scholar 

  • Liu Q, Brubaker CL, Green AG, Marshall DR, Sharp PJ, Singh SP (2001) Evolution of the FAD2–1 fatty acid desaturase 5′-UTR intron and the molecular systematic of Gossypium (Malvaceae). Am J Bot 88:92–102

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Singh SP, Green AG (2002) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732–1743

    Article  PubMed  CAS  Google Scholar 

  • McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173

    Article  PubMed  CAS  Google Scholar 

  • Miquel M, Browse J (1990) Mutants of Arabidopsis deficient in 18:l—PC desaturation. In: Quinn PJ, Harwood JL (eds) Plant lipid biochemistry, structure and utilization. Portland Press, London, pp 456–458

    Google Scholar 

  • Miquel M, JrD James, Donner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA 90:6208–6212

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzymes that is essential for polyunsaturated lipid synthesis. Plant cell 6:147–158

    Article  PubMed  CAS  Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var alboglabra that are homoeologous to sequenced regions of the chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    Article  PubMed  Google Scholar 

  • Park JY, Koo DH, Hong CP, Lee SJ, Jeon JW, Lee SH, Yun PY, Park BS, Kim HR, Bang JW, Plaha P, Bancroft I, Lim YP (2005) Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kbp gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol Gen Genomics 274:579–588

    Article  CAS  Google Scholar 

  • Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C (2010) Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep 29:317–325

    Article  PubMed  CAS  Google Scholar 

  • Saint-Jore CM, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29:661–678

    Article  PubMed  CAS  Google Scholar 

  • Schlueter JA, Vasylenko-Sanders IF, Deshpande S, Yi J, Siegfried M, Roe BA, Schlueter SD, Scheffler BE, Shoemaker RC (2007) The FAD2 gene family of soybean: insights into the structural and functional divergence of a paleopolyploid genome. Crop Sci 47:S14–S26

    Article  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Browse J, Jaworski JG, Ohlrogge JB (2000) Lipids. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. Am Soc Plant Physiol, Rockville, pp 456–527

    Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  PubMed  CAS  Google Scholar 

  • Stoutjesdijk PA, Hurlestone C, Singh SP, Green AG (2000) High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous ∆12–desaturases. Biochem Soc Trans 28:938–940

    Article  PubMed  CAS  Google Scholar 

  • Tang G-Q, Novitzky WP, Griffin CH, Huber SC, Dewey RE (2005) Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J 44:433–446

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    Article  PubMed  CAS  Google Scholar 

  • Xiao YF, Ke Q, Wang SY, Auktor K, Yang Y, Wang GK, Morgan JP, Leaf A (2001) Single point mutations affect fatty acid block of human myocardial sodium channel alpha subunit Na+ channels. Proc Natl Acad Sci USA 98:3606–3611

    Article  PubMed  CAS  Google Scholar 

  • Yang Y-W, Lai K-N, Tai P-Y, Ma D-P, Li W-H (1999) Molecular phylogenetic studies of Brassica, Rorippa, Arabidopsis and allied genera based on the internal transcribed spacer region of 18S–25S rDNA. Mol Phylogenet Evol 13:455–462

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Pirtle IL, Park SJ, Nampaisansuk M, Neogi P, Wanjie SW, Pirtle RM, Chapman KD (2009) Identification and expression of a new delta-12 fatty acid desaturase (FAD2–4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiol Biochem 47:462–464

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Beom-Seok Park, RDA, Korea, for providing the B. rapa FAD2-1 gene and John Browse, Washington State University, Pullman, Washington, for providing Arabidopsis fad2-2 seeds. The nucleotide sequence of the BrFAD2-1 gene from B. rapa ssp. pekinensis reported herein has been registered in the GenBankTM/EBI Data Bank under accession number HM189213. This work was supported by grants from Research Programs (PJ007441201008 and PJ0067152010), the Rural Development Administration, Republic of Korea, and Basic Research Program (20090064298) and the World Class University Project (R31-2009-000-20025-0) from the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Uk Kim or Mi Chung Suh.

Additional information

Communicated by J. R. Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J.H., Kim, H., Go, Y.S. et al. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep 30, 1881–1892 (2011). https://doi.org/10.1007/s00299-011-1095-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1095-x

Keywords

Navigation