Skip to main content
Log in

Tuning the sequence specificity of a transcription terminator

  • Mini-Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The bacterial hexameric helicase known as Rho is an archetypal sequence-specific transcription terminator that typically halts the synthesis of a defined set of transcripts, particularly those bearing cytosine-rich 3′-untranslated regions. However, under conditions of translational stress, Rho can also terminate transcription at cytosine-poor sites when assisted by the transcription factor NusG. Recent structural, biochemical, and computational studies of the Rho·NusG interaction in Escherichia coli have helped establish how NusG reprograms Rho activity. NusG is found to be an allosteric activator of Rho that directly binds to the ATPase motor domain of the helicase and facilitates closure of the Rho ring around non-ideal (purine-rich) target RNAs. The manner in which NusG acts on Rho helps to explain how the transcription terminator is excluded from acting on RNA polymerase by exogenous factors, such as the antitermination protein NusE, the NusG paralog RfaH, and RNA polymerase-coupled ribosomes. Collectively, an understanding of the link between NusG and Rho provides new insights into how transcriptional and translational fidelity are maintained during gene expression in bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Artsimovitch I, Landick R (2002) The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 109:193–203

    Article  CAS  PubMed  Google Scholar 

  • Baniulyte G, Singh N, Benoit C, Johnson R, Ferguson R, Paramo M, Stringer AM, Scott A, Lapierre P, Wade JT (2017) Identification of regulatory targets for the bacterial Nus factor complex. Nat Commun 8:2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidnenko E, Bidnenko V (2018) Transcription termination factor Rho and microbial phenotypic heterogeneity. Curr Genet 64:541–546

    Article  CAS  PubMed  Google Scholar 

  • Bogden CE, Fass D, Bergman N, Nichols MD, Berger JM (1999) The structural basis for terminator recognition by the Rho transcription termination factor. Mol Cell 3:487–493

    Article  CAS  PubMed  Google Scholar 

  • Brennan CA, Dombroski AJ, Platt T (1987) Transcription termination factor rho is an RNA-DNA helicase. Cell 48:945–952

    Article  CAS  PubMed  Google Scholar 

  • Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL, Gottesman ME, Rosch P (2010) A NusE:NusG complex links transcription and translation. Science 328:501–504

    Article  CAS  PubMed  Google Scholar 

  • Burmann BM, Knauer SH, Sevostyanova A, Schweimer K, Mooney RA, Landick R, Artsimovitch I, Rosch P (2012) An alpha helix to beta barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell 150:291–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns CM, Richardson JP (1995) NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator. Proc Natl Acad Sci USA 92:4738–4742

    Article  CAS  PubMed  Google Scholar 

  • Cardinale CJ, Washburn RS, Tadigotla VR, Brown LM, Gottesman ME, Nudler E (2008) Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science 320:935–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalissery J, Muteeb G, Kalarickal NC, Mohan S, Jisha V, Sen R (2011) Interaction surface of the transcription terminator Rho required to form a complex with the C-terminal domain of the antiterminator NusG. J Mol Biol 405:49–64

    Article  CAS  PubMed  Google Scholar 

  • Dolan JW, Marshall NF, Richardson JP (1990) Transcription termination factor rho has three distinct structural domains. J Biol Chem 265:5747–5754

    CAS  PubMed  Google Scholar 

  • Downing WL, Sullivan SL, Gottesman ME, Dennis PP (1990) Sequence and transcriptional pattern of the essential Escherichia coli secE-nusG operon. J Bacteriol 172:1621–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E (2007) An allosteric path to transcription termination. Mol Cell 28:991–1001

    Article  CAS  PubMed  Google Scholar 

  • Goodson JR, Klupt S, Zhang C, Straight P, Winkler WC (2017) LoaP is a broadly conserved antiterminator protein that regulates antibiotic gene clusters in Bacillus amyloliquefaciens. Nat Microbiol 2:17003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez P, Kozlov G, Gabrielli L, Elias D, Osborne MJ, Gallouzi IE, Gehring K (2007) Solution structure of YaeO, a Rho-specific inhibitor of transcription termination. J Biol Chem 282:23348–23353

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Artsimovitch I (2017) A screen for rfaH suppressors reveals a key role for a connector region of termination factor Rho. MBio 8

  • Kohler R, Mooney RA, Mills DJ, Landick R, Cramer P (2017) Architecture of a transcribing-translating expressome. Science 356:194–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson MR, Dyer K, Berger JM (2016) Ligand-induced and small-molecule control of substrate loading in a hexameric helicase. Proc Natl Acad Sci USA 113:13714–13719

    Article  CAS  PubMed  Google Scholar 

  • Lawson MR, Ma W, Bellecourt MJ, Artsimovitch I, Martin A, Landick R, Schulten K, Berger JM (2018) Mechanism for the regulated control of bacterial transcription termination by a universal adaptor protein. Mol Cell 71:911–922.e914

    Article  CAS  PubMed  Google Scholar 

  • Miller OL Jr, Hamkalo BA, Thomas CA Jr (1970) Visualization of bacterial genes in action. Science 169:392–395

    Article  PubMed  Google Scholar 

  • Mitra P, Ghosh G, Hafeezunnisa M, Sen R (2017) Rho protein: roles and mechanisms. Annu Rev Microbiol 71:687–709

    Article  CAS  PubMed  Google Scholar 

  • Miwa Y, Horiguchi T, Shigesada K (1995) Structural and functional dissections of transcription termination factor rho by random mutagenesis. J Mol Biol 254:815–837

    Article  CAS  PubMed  Google Scholar 

  • Mooney RA, Schweimer K, Rosch P, Gottesman M, Landick R (2009) Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J Mol Biol 391:341–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan WD, Bear DG, Litchman BL, von Hippel PH (1985) RNA sequence and secondary structure requirements for rho-dependent transcription termination. Nucleic Acids Res 13:3739–3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nehrke KW, Zalatan F, Platt T (1993) NusG alters rho-dependent termination of transcription in vitro independent of kinetic coupling. Gene Expr 3:119–133

    CAS  PubMed  Google Scholar 

  • Pani B, Banerjee S, Chalissery J, Muralimohan A, Loganathan RM, Suganthan RB, Sen R (2006) Mechanism of inhibition of Rho-dependent transcription termination by bacteriophage P4 protein Psu. J Biol Chem 281:26491–26500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JS, Roberts JW (2006) Role of DNA bubble rewinding in enzymatic transcription termination. Proc Natl Acad Sci U S A 103:4870–4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasman Z, von Hippel PH (2000) Regulation of rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex. Biochemistry 39:5573–5585

    Article  CAS  PubMed  Google Scholar 

  • Peters JM, Mooney RA, Kuan PF, Rowland JL, Keles S, Landick R (2009) Rho directs widespread termination of intragenic and stable RNA transcription. Proc Natl Acad Sci U S A 106:15406–15411

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters JM, Vangeloff AD, Landick R (2011) Bacterial transcription terminators: the RNA 3′-end chronicles. J Mol Biol 412:793–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R (2012) Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 26:2621–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabhi M, Espeli O, Schwartz A, Cayrol B, Rahmouni AR, Arluison V, Boudvillain M (2011) The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators. Embo j 30:2805–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray-Soni A, Bellecourt MJ, Landick R (2016) Mechanisms of bacterial transcription termination: all good things must end. Annu Rev Biochem 85:319–347

    Article  CAS  PubMed  Google Scholar 

  • Richardson JP (1982) Activation of rho protein ATPase requires simultaneous interaction at two kinds of nucleic acid-binding sites. J Biol Chem 257:5760–5766

    CAS  PubMed  Google Scholar 

  • Ruteshouser EC, Richardson JP (1989) Identification and characterization of transcription termination sites in the Escherichia coli lacZ gene. J Mol Biol 208:23–43

    Article  CAS  PubMed  Google Scholar 

  • Said N, Krupp F, Anedchenko E, Santos KF, Dybkov O, Huang YH, Lee CT, Loll B, Behrmann E, Burger J et al (2017) Structural basis for lambdaN-dependent processive transcription antitermination. Nat Microbiol 2:17062

    Article  CAS  PubMed  Google Scholar 

  • Schwartz A, Margeat E, Rahmouni AR, Boudvillain M (2007) Transcription termination factor rho can displace streptavidin from biotinylated RNA. J Biol Chem 282:31469–31476

    Article  CAS  PubMed  Google Scholar 

  • Sedlyarova N, Shamovsky I, Bharati BK, Epshtein V, Chen J, Gottesman S, Schroeder R, Nudler E (2016) sRNA-mediated control of transcription termination in E. coli. Cell 167:111–121.e113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevostyanova A, Groisman EA (2015) An RNA motif advances transcription by preventing Rho-dependent termination. Proc Natl Acad Sci USA 112:E6835–E6843

    Article  CAS  PubMed  Google Scholar 

  • Skordalakes E, Berger JM (2003) Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114:135–146

    Article  CAS  PubMed  Google Scholar 

  • Thomsen ND, Berger JM (2009) Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139:523–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen ND, Lawson MR, Witkowsky LB, Qu S, Berger JM (2016) Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor. Proc Natl Acad Sci USA 113:E7691-e7700

    Article  CAS  PubMed  Google Scholar 

  • Tomar SK, Artsimovitch I (2013) NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 113:8604–8619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valabhoju V, Agrawal S, Sen R (2016) Molecular basis of nusg-mediated regulation of Rho-dependent transcription termination in bacteria. J Biol Chem 291:22386–22403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Horiguchi T, Shigesada K, Egelman EH (2000) Three-dimensional reconstruction of transcription termination factor rho: orientation of the N-terminal domain and visualization of an RNA-binding site. J Mol Biol 299:1279–1287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by G. Harold and Leila Y. Mathers Foundation and the National Institute of General Medical Sciences (R37-071747), to J.M.B. M.R.L. gratefully acknowledges support from the A.P. Giannini Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Berger.

Additional information

Communicated by M. Kupiec.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawson, M.R., Berger, J.M. Tuning the sequence specificity of a transcription terminator. Curr Genet 65, 729–733 (2019). https://doi.org/10.1007/s00294-019-00939-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-019-00939-1

Keywords

Navigation