Skip to main content
Log in

Protective mechanisms against the antitumor agent bleomycin: lessons from Saccharomyces cerevisiae

  • Review Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract.

Bleomycin is a small glycopeptide antibiotic used in combination therapy for the treatment of a few types of human cancer. The antitumor effect of bleomycin is most likely caused by its ability to bind to DNA and induce the formation of toxic DNA lesions via a free radical reactive (Fe.bleomycin) complex. However, the chemotherapeutic potential of bleomycin is limited, as it causes pulmonary fibrosis and tumor resistance at high doses. The chemical structure and modes of action of bleomycin have been extensively studied and these provide a foundation towards improving the therapeutic value of the drug. This review provides a first account of the current state of knowledge of the cellular processes that can allow the yeast Saccharomyces cerevisiae to evade the lethal effects of bleomycin. This model organism is likely to provide rapid clues in our understanding of bleomycin resistance in tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2A, B.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Abe H, Wada M, Kohno K, Kuwano M (1994) Altered drug sensitivities to anticancer agents in radiation-sensitive DNA repair deficient yeast mutants. Anticancer Res 14:1807–1810

    CAS  PubMed  Google Scholar 

  • Abraham AT, Zhou X, Hecht SM (1999) DNA cleavage by Fe(II). bleomycin conjugated to a solid support. J Am Chem Soc 121:1982–1983

    Article  CAS  Google Scholar 

  • Absalon MJ, Kozarich JW, Stubbe J (1995a) Sequence-specific double-strand cleavage of DNA by Fe-bleomycin. 1. The detection of sequence-specific double-strand breaks using hairpin oligonucleotides. Biochemistry 34:2065–2075

    CAS  PubMed  Google Scholar 

  • Absalon MJ, Wu W, Kozarich JW, Stubbe J (1995b) Sequence-specific double-strand cleavage of DNA by Fe-bleomycin. 2. Mechanism and dynamics. Biochemistry 34:2076–2086

    CAS  PubMed  Google Scholar 

  • Akiyama S, Ikezaki K, Kuramochi H, Takahashi K, Kuwano M (1981) Bleomycin-resistant cells contain increased bleomycin-hydrolase activities. Biochem Biophys Res Commun 101: 55–60

    CAS  PubMed  Google Scholar 

  • Alarco AM, Balan I, Talibi D, Mainville N, Raymond M (1997) AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 272:19304–19313

    Article  CAS  PubMed  Google Scholar 

  • Aouida M, Tounekti O, Belhadj O, Mir L (2003) Comparative roles of cell wall and cell membrane in limiting xenobiotic molecules uptake by Saccharomyces cerevisiae. Antimicrob Agents Chemother (in press)

  • Bennett RA (1999) The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis. Mol Cell Biol 19:1800–1809

    CAS  PubMed  Google Scholar 

  • Bennett RA, Swerdlow PS, Povirk LF (1993) Spontaneous cleavage of bleomycin-induced abasic sites in chromatin and their mutagenicity in mammalian shuttle vectors. Biochemistry 32:3188–3195

    CAS  PubMed  Google Scholar 

  • Benson JD, Benson M, Howley PM, Struhl K (1998) Association of distinct yeast Not2 functional domains with components of Gcn5 histone acetylase and Ccr4 transcriptional regulatory complexes. EMBO J 17:6714–6722

    Article  CAS  PubMed  Google Scholar 

  • Boger DL, Colletti SL, Teramoto S, Ramsey TM, Zhou J (1995) Synthesis of key analogs of bleomycin A2 that permit a systematic evaluation of the linker region: identification of an exceptionally prominent role for the l-threonine substituent. Bioorg Med Chem 3:1281–1295

    Article  CAS  PubMed  Google Scholar 

  • Bromme D, Rossi AB, Smeekens SP, Anderson DC, Payan DG (1996) Human bleomycin hydrolase: molecular cloning, sequencing, functional expression, and enzymatic characterization. Biochemistry 35:6706–6714

    Article  CAS  PubMed  Google Scholar 

  • Burger RM (1998) Cleavage of nucleic acids by bleomycin. Chem Rev 98:1153–1169

    CAS  PubMed  Google Scholar 

  • Burger RM, Peisach J, Blumberg WE, Horwitz SB (1979) Iron-bleomycin interactions with oxygen and oxygen analogues. Effects on spectra and drug activity. J Biol Chem 254:10906–10912

    CAS  PubMed  Google Scholar 

  • Burger RM, Berkowitz AR, Peisach J, Horwitz SB (1980) Origin of malondialdehyde from DNA degraded by Fe(II) × bleomycin. J Biol Chem 255:11832–11838

    CAS  PubMed  Google Scholar 

  • Burger RM, Peisach J, Horwitz SB (1981a) Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA. J Biol Chem 256:11636–11644

    CAS  PubMed  Google Scholar 

  • Burger RM, Peisach J, Horwitz SB (1981b) Mechanism of bleomycin action: in vitro studies. Life Sci 28:715–727

    Article  CAS  PubMed  Google Scholar 

  • Burger RM, Peisach J, Horwitz SB (1982a) Effects of O2 on the reactions of activated bleomycin. J Biol Chem 257:3372–3375

    CAS  PubMed  Google Scholar 

  • Burger RM, Peisach J, Horwitz SB (1982b) Stoichiometry of DNA strand scission and aldehyde formation by bleomycin. J Biol Chem 257:8612–8614

    CAS  PubMed  Google Scholar 

  • Burger RM, Blanchard JS, Horwitz SB, Peisach J (1985) The redox state of activated bleomycin. J Biol Chem 260:15406–15409

    CAS  PubMed  Google Scholar 

  • Burns N, Grimwade B, Ross-Macdonald PB, Choi EY, Finberg K, Roeder GS, Snyder M (1994) Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev 8:1087–1105

    CAS  PubMed  Google Scholar 

  • Carter BJ, Vroom E de, Long EC, Marel GA van der, Boom JH van, Hecht SM (1990) Site-specific cleavage of RNA by Fe(II).bleomycin. Proc Natl Acad Sci USA 87:9373–9377

    CAS  PubMed  Google Scholar 

  • Coleman ST, Tseng E, Moye-Rowley WS (1997) Saccharomyces cerevisiae basic region-leucine zipper protein regulatory networks converge at the ATR1 structural gene. J Biol Chem 272:23224–23230

    Article  CAS  PubMed  Google Scholar 

  • Colwill K, Pawson T, Andrews B, Prasad J, Manley JL, Bell JC, Duncan PI (1996) The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J 15:265–275

    CAS  PubMed  Google Scholar 

  • Dar ME, Jorgensen TJ (1995) Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double- and single-strand breaks, respectively, in a human shuttle vector system. Nucleic Acids Res 23:3224–3230

    CAS  PubMed  Google Scholar 

  • Decottignies A, Goffeau A (1997) Complete inventory of the yeast ABC proteins. Nat Genet 15:137–145

    CAS  PubMed  Google Scholar 

  • Decottignies A, Lambert L, Catty P, Degand H, Epping EA, Moye-Rowley WS, Balzi E, Goffeau A (1995) Identification and characterization of SNQ2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane. J Biol Chem 270:18150–18157

    CAS  PubMed  Google Scholar 

  • Dedon PC, Goldberg IH (1992) Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chem Res Toxicol 5:311–332

    CAS  PubMed  Google Scholar 

  • Dedon PC, Plastaras JP, Rouzer CA, Marnett LJ (1998) Indirect mutagenesis by oxidative DNA damage: formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal. Proc Natl Acad Sci USA 95:11113–11116

    Article  CAS  PubMed  Google Scholar 

  • Demple B, Johnson A, Fung D (1986) Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc Natl Acad Sci USA 83:7731–7735

    CAS  PubMed  Google Scholar 

  • Donnini C, Lodi T, Ferrero I, Algeri A, Puglisi PP (1992) Allelism of IMP1 and GAL2 genes of Saccharomyces cerevisiae. J Bacteriol 174:3411–3415

    CAS  PubMed  Google Scholar 

  • Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004

    Article  CAS  PubMed  Google Scholar 

  • Ehrenfeld GM, Rodriguez LO, Hecht SM, Chang C, Basus VJ, Oppenheimer NJ (1985) Copper(I)-bleomycin: structurally unique complex that mediates oxidative DNA strand scission. Biochemistry 24:81–92

    CAS  PubMed  Google Scholar 

  • Ehrenfeld GM, Shipley JB, Heimbrook DC, Sugiyama H, Long EC, Boom JH van, Marel GA van der, Oppenheimer NJ, Hecht SM (1987) Copper-dependent cleavage of DNA by bleomycin. Biochemistry 26:931–942

    CAS  PubMed  Google Scholar 

  • Einhorn LH (2002) Curing metastatic testicular cancer. Proc Natl Acad Sci USA 99:4592–4595

    Article  CAS  PubMed  Google Scholar 

  • Ekimoto H, Kuramochi H, Takahashi K, Matsuda A, Umezawa H (1980) Kinetics of the reaction of bleomycin-Fe(II)-O2 complex with DNA. J Antibiot (Tokyo) 33:426–434

    Google Scholar 

  • Ekimoto H, Takahashi K, Matsuda A, Takita T, Umezawa H (1985) Lipid peroxidation by bleomycin–iron complexes in vitro. J Antibiot (Tokyo) 38:1077–1082

    Google Scholar 

  • Enenkel C, Wolf DH (1993) BLH1 codes for a yeast thiol aminopeptidase, the equivalent of mammalian bleomycin hydrolase. J Biol Chem 268:7036–7043

    CAS  PubMed  Google Scholar 

  • Evans Febres D, Pramanik A, Caton M, Doherty K, McKoy J, Garcia E, Alejo W, Wood Moore C (2001) The novel BLM3 gene encodes a protein that protects against lethal effects of oxidative damage. Cell Mol Biol (Noisy-le-grand) 47:1149–1162

    Google Scholar 

  • Faik A, Laboure AM, Gulino D, Mandaron P, Falconet D (1998) A plant surface protein sharing structural properties with animal integrins. Eur J Biochem 253:552–559

    Article  CAS  PubMed  Google Scholar 

  • Feldmann H, Driller L, Meier B, Mages G, Kellermann J, Winnacker EL (1996) HDF2, the second subunit of the Ku homologue from Saccharomyces cerevisiae. J Biol Chem 271:27765–27769

    Article  CAS  PubMed  Google Scholar 

  • Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983

    CAS  PubMed  Google Scholar 

  • Giloni L, Takeshita M, Johnson F, Iden C, Grollman AP (1981) Bleomycin-induced strand-scission of DNA. Mechanism of deoxyribose cleavage. J Biol Chem 256:8608–8615

    CAS  Google Scholar 

  • Gray JV, Ogas JP, Kamada Y, Stone M, Levin DE, Herskowitz I (1997) A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 16:4924–4937

    CAS  PubMed  Google Scholar 

  • Harrison JH Jr, Lazo JS (1987) High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary fibrosis. J Pharmacol Exp Ther 243:1185–1194

    CAS  PubMed  Google Scholar 

  • He CH, Ramotar D (1999) An allele of the yeast RPB7 gene, encoding an essential subunit of RNA polymerase II, reduces cellular resistance to the antitumor drug bleomycin. Biochem Cell Biol 77:375–382

    Article  CAS  PubMed  Google Scholar 

  • He CH, Masson JY, Ramotar D (1996a) Functional mitochondria are essential for Saccharomyces cerevisiae cellular resistance to bleomycin. Curr Genet 30:279–283

    Article  CAS  PubMed  Google Scholar 

  • He CH, Masson JY, Ramotar D (1996b) A Saccharomyces cerevisiae phleomycin-sensitive mutant, ph140, is defective in the RAD6 DNA repair gene. Can J Microbiol 42:1263–1266

    CAS  PubMed  Google Scholar 

  • Hecht SM (1986) DNA strand scission by activated bleomycin group antibiotics. Fed Proc 45:2784–2791

    CAS  PubMed  Google Scholar 

  • Hecht SM (1994) RNA degradation by bleomycin, a naturally occurring bioconjugate. Bioconjug Chem 5:513–526

    CAS  PubMed  Google Scholar 

  • Hertzberg RP, Caranfa MJ, Hecht SM (1985) DNA methylation diminishes bleomycin-mediated strand scission. Biochemistry 24:5286–5289

    CAS  PubMed  Google Scholar 

  • Hertzberg RP, Caranfa MJ, Hecht SM (1988) Degradation of structurally modified DNAs by bleomycin group antibiotics. Biochemistry 27:3164–3174

    CAS  PubMed  Google Scholar 

  • Hoehn ST, Junker HD, Bunt RC, Turner CJ, Stubbe J (2001) Solution structure of Co(III)-bleomycin-OOH bound to a phosphoglycolate lesion containing oligonucleotide: implications for bleomycin-induced double-strand DNA cleavage. Biochemistry 40:5894–5905

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann GR, Colyer SP, Littlefield LG (1993) Induction of micronuclei by bleomycin in G0 human lymphocytes: I. Dose-response and distribution. Environ Mol Mutagen 21:130–135

    CAS  PubMed  Google Scholar 

  • Holmes CE, Hecht SM (1993) Fe.bleomycin cleaves a transfer RNA precursor and its "transfer DNA" analog at the same major site. J Biol Chem 268:25909–25913

    PubMed  Google Scholar 

  • Holmes CE, Carter BJ, Hecht SM (1993) Characterization of iron (II).bleomycin-mediated RNA strand scission. Biochemistry 32:4293–4307

    CAS  PubMed  Google Scholar 

  • Holmes CE, Duff RJ, Marel GA van der, Boom J van, Hecht SM (1997) On the chemistry of RNA degradation by Fe.bleomycin. Bioorg Med Chem 5:1235–1248

    Article  CAS  PubMed  Google Scholar 

  • Huttenhofer A, Hudson S, Noller HF, Mascharak PK (1992) Cleavage of tRNA by Fe(II)-bleomycin. J Biol Chem 267:24471–24475

    CAS  PubMed  Google Scholar 

  • Ichikawa T, Nakano I, Hirokawa I (1969) Bleomycin treatment of the tumors of penis and scrotum. J Urol 102:699–707

    CAS  PubMed  Google Scholar 

  • Igual JC, Johnson AL, Johnston LH (1996) Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. Embo J 15:5001–5013

    CAS  PubMed  Google Scholar 

  • Irie K, Takase M, Lee KS, Levin DE, Araki H, Matsumoto K, Oshima Y (1993) MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol 13:3076–3083

    CAS  PubMed  Google Scholar 

  • Jani JP, Mistry JS, Morris G, Davies P, Lazo JS, Sebti SM (1992a) In vivo circumvention of human colon carcinoma resistance to bleomycin. Cancer Res 52: 2931–2937

    CAS  PubMed  Google Scholar 

  • Jani JP, Mistry JS, Morris G, Lazo JS, Sebti SM (1992b) In vivo sensitization of human lung carcinoma to bleomycin by the cysteine proteinase inhibitor E-64. Oncol Res 4:59–63

    CAS  PubMed  Google Scholar 

  • Jentsch S, McGrath JP, Varshavsky A (1987) The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329:131–134

    Google Scholar 

  • Jilani A, Ramotar D, Slack C, Ong C, Yang XM, Scherer SW, Lasko DD (1999) Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem 274:24176–24186

    Article  CAS  PubMed  Google Scholar 

  • Johnson RE, Torres-Ramos CA, Izumi T, Mitra S, Prakash S, Prakash L (1998) Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dev 12:3137–3143

    CAS  PubMed  Google Scholar 

  • Joshua-Tor L, Xu HE, Johnston SA, Rees DC (1995) Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science 269:945–950

    CAS  PubMed  Google Scholar 

  • Kambouris NG, Burke DJ, Creutz CE (1992) Cloning and characterization of a cysteine proteinase from Saccharomyces cerevisiae. J Biol Chem 267:21570–21576

    CAS  PubMed  Google Scholar 

  • Kane SA, Hecht SM (1994) Polynucleotide recognition and degradation by bleomycin. Prog Nucleic Acid Res Mol Biol 49:313–352

    CAS  PubMed  Google Scholar 

  • Kane SA, Natrajan A, Hecht SM (1994) On the role of the bithiazole moiety in sequence-selective DNA cleavage by Fe.bleomycin. J Biol Chem 269:10899–10904

    CAS  PubMed  Google Scholar 

  • Kane SA, Hecht SM, Sun JS, Garestier T, Helene C (1995) Specific cleavage of a DNA triple helix by FeII.bleomycin. Biochemistry 34:16715–16724

    CAS  PubMed  Google Scholar 

  • Kanno T, Nakazawa T, Sugimoto T (1969) Study of bleomycin on brain tumors. 1. Inhibitory effect of bleomycin on cultured brain tumor cells (in Japanese). Seishin Igaku Kenkyusho Gyosekishu 16:23–31

    CAS  PubMed  Google Scholar 

  • Katzmann DJ, Hallstrom TC, Mahe Y, Moye-Rowley WS (1996) Multiple Pdr1p/Pdr3p binding sites are essential for normal expression of the ATP binding cassette transporter protein-encoding gene PDR5. J Biol Chem 271:23049–23054

    Article  CAS  PubMed  Google Scholar 

  • Katzmann DJ, Epping EA, Moye-Rowley WS (1999) Mutational disruption of plasma membrane trafficking of Saccharomyces cerevisiae Yor1p, a homologue of mammalian multidrug resistance protein. Mol Cell Biol 19:2998–3009

    CAS  PubMed  Google Scholar 

  • Keck MV, Hecht SM (1995) Sequence-specific hydrolysis of yeast tRNA(Phe) mediated by metal-free bleomycin. Biochemistry 34:12029–12037

    CAS  PubMed  Google Scholar 

  • Keszenman DJ, Salvo VA, Nunes E (1992) Effects of bleomycin on growth kinetics and survival of Saccharomyces cerevisiae: a model of repair pathways. J Bacteriol 174:3125–3132

    CAS  PubMed  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421

    CAS  PubMed  Google Scholar 

  • Kobe B, Deisenhofer J (1995) A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374:183–186

    Google Scholar 

  • Koldamova RP, Lefterov IM, DiSabella MT, Almonte C, Watkins SC, Lazo JS (1999) Human bleomycin hydrolase binds ribosomal proteins. Biochemistry 38:7111–7117

    Article  CAS  PubMed  Google Scholar 

  • Lazo JS, Humphreys CJ (1983) Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity. Proc Natl Acad Sci USA 80:3064–3068

    CAS  PubMed  Google Scholar 

  • Lazo JS, Sebti SM, Schellens JH (1996) Bleomycin. Cancer Chemother Biol Response Modif 16:39–47

    CAS  PubMed  Google Scholar 

  • Leduc A, He CH, Ramotar D (2003) Disruption of the Saccharomyces cerevisiae cell wall pathway gene SLG1 causes hypersensitivity to the antitumor drug bleomycin. Mol Gen Genomics (in press)

  • Lee KS, Levin DE (1992) Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol Cell Biol 12:172–182

    CAS  Google Scholar 

  • Lee KS, Irie K, Gotoh Y, Watanabe Y, Araki H, Nishida E, Matsumoto K, Levin DE (1993) A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol 13:3067–3075

    CAS  PubMed  Google Scholar 

  • Leitheiser CJ, Rishel MJ, Wu X, Hecht SM (2000) Solid-phase synthesis of bleomycin group antibiotics. Elaboration of deglycobleomycin A(5). Org Lett 2:3397–3399

    Article  CAS  PubMed  Google Scholar 

  • Levin DE, Bartlett-Heubusch E (1992) Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116:1221–1229

    CAS  PubMed  Google Scholar 

  • Levin DE, Errede B (1995) The proliferation of MAP kinase signaling pathways in yeast. Curr Opin Cell Biol 7:197–202

    PubMed  Google Scholar 

  • Levin JD, Demple B (1996) In vitro detection of endonuclease IV-specific DNA damage formed by bleomycin in vivo. Nucleic Acids Res 24:885–889

    Article  CAS  PubMed  Google Scholar 

  • Levin JD, Johnson AW, Demple B (1988) Homogeneous Escherichia coli endonuclease IV. Characterization of an enzyme that recognizes oxidative damage in DNA. J Biol Chem 263:8066–8071

    CAS  PubMed  Google Scholar 

  • Levy MJ, Hecht SM (1988) Copper(II) facilitates bleomycin-mediated unwinding of plasmid DNA. Biochemistry 27:2647–2650

    CAS  PubMed  Google Scholar 

  • Lodi T, Goffrini P, Ferrero I, Donnini C (1995) IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae. Microbiology 141:2201–2209

    CAS  PubMed  Google Scholar 

  • Madura K, Prakash S, Prakash L (1990) Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucleic Acids Res 18:771–778

    CAS  PubMed  Google Scholar 

  • Magdolen U, Muller G, Magdolen V, Bandlow W (1993) A yeast gene (BLH1) encodes a polypeptide with high homology to vertebrate bleomycin hydrolase, a family member of thiol proteinases. Biochim Biophys Acta 1171:299–303

    Article  CAS  PubMed  Google Scholar 

  • Mages GJ, Feldmann HM, Winnacker EL (1996) Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J Biol Chem 271:7910–7915

    Article  CAS  PubMed  Google Scholar 

  • Mascharak PK, Sugiura Y, Kuwahara J, Suzuki T, Lippard SJ (1983) Alteration and activation of sequence-specific cleavage of DNA by bleomycin in the presence of the antitumor drug cis-diamminedichloroplatinum(II). Proc Natl Acad Sci USA 80:6795–6798

    CAS  PubMed  Google Scholar 

  • Masson JY, Ramotar D (1996) The Saccharomyces cerevisiae IMP2 gene encodes a transcriptional activator that mediates protection against DNA damage caused by bleomycin and other oxidants. Mol Cell Biol 16:2091–2100

    Google Scholar 

  • Masson JY, Ramotar D (1998) The transcriptional activator Imp2p maintains ion homeostasis in Saccharomyces cerevisiae. Genetics 149:893–901

    CAS  PubMed  Google Scholar 

  • Mayer U (2003) Integrins, redundant or important players in skeletal muscle? J Biol Chem 29 (in press)

  • Miyaki M, Ono T, Hori S, Umezawa H (1975) Binding of bleomycin to DNA in bleomycin-sensitive and -resistant rat ascites hepatoma cells. Cancer Res 35:2015–2019

    CAS  PubMed  Google Scholar 

  • Moore CW (1991) Further characterizations of bleomycin-sensitive (blm) mutants of Saccharomyces cerevisiae with implications for a radiomimetic model. J Bacteriol 173:3605–3608

    CAS  PubMed  Google Scholar 

  • Morgan MA, Hecht SM (1994) Iron(II) bleomycin-mediated degradation of a DNA–RNA heteroduplex. Biochemistry 33:10286–10293

    CAS  PubMed  Google Scholar 

  • Morris G, Mistry JS, Jani JP, Mignano JE, Sebti SM, Lazo JS (1992) Neutralization of bleomycin hydrolase by an epitope-specific antibody. Mol Pharmacol 42:57–62

    CAS  PubMed  Google Scholar 

  • Nagase T, Uozumi N, Ishii S, Kita Y, Yamamoto H, Ohga E, Ouchi Y, Shimizu T (2002) A pivotal role of cytosolic phospholipase A(2) in bleomycin-induced pulmonary fibrosis. Nat Med 8:480–484

    Article  CAS  PubMed  Google Scholar 

  • Nishimura C, Suzuki H, Tanaka N, Yamaguchi H (1989) Bleomycin hydrolase is a unique thiol aminopeptidase. Biochem Biophys Res Commun 163:788–796

    CAS  PubMed  Google Scholar 

  • O'Farrell PA, Gonzalez F, Zheng W, Johnston SA, Joshua-Tor L (1999) Crystal structure of human bleomycin hydrolase, a self-compartmentalizing cysteine protease. Struct Fold Des 7:619–627

    Article  CAS  Google Scholar 

  • Oka S, Sato K, Nakai Y, Kurita K, Hashimoto K (1970) Treatment of lung cancer with bleomycin. II. Sci Rep Res Inst Tohoku Univ (Med) 17:77–91

    Google Scholar 

  • Onishi T, Iwata H, Takagi Y (1975) Effects of reducing and oxidizing agents on the action of bleomycin. J Biochem (Tokyo) 77:745–752

    Google Scholar 

  • Oppenheimer NJ, Rodriguez LO, Hecht SM (1980) Metal binding to modified bleomycins. Zinc and ferrous complexes with an acetylated bleomycin. Biochemistry 19:4096–4103

    CAS  PubMed  Google Scholar 

  • Oppenheimer NJ, Chang C, Rodriguez LO, Hecht SM (1981) Copper(I).bleomycin. A structurally unique oxidation–reduction active complex. J Biol Chem 256:1514–1517

    CAS  PubMed  Google Scholar 

  • Oskouian B, Saba JD (1999) YAP1 confers resistance to the fatty acid synthase inhibitor cerulenin through the transporter Flr1p in Saccharomyces cerevisiae. Mol Gen Genet 261:346–353

    Article  CAS  PubMed  Google Scholar 

  • Pavon V, Esteve I, Guerrero R, Villaverde A, Gaju N (1995) Induced mutagenesis by bleomycin in the purple sulfur bacterium Thiocapsa roseopersicina. Curr Microbiol 30:117–120

    CAS  PubMed  Google Scholar 

  • Pei Z, Calmels TP, Creutz CE, Sebti SM (1995) Yeast cysteine proteinase gene ycp1 induces resistance to bleomycin in mammalian cells. Mol Pharmacol 48:676–681

    CAS  PubMed  Google Scholar 

  • Petering DH, Mao Q, Li W, DeRose E, Antholine WE (1996) Metallobleomycin–DNA interactions: structures and reactions related to bleomycin-induced DNA damage. Met Ion Biol Syst 33:619–648

    CAS  Google Scholar 

  • Petrovic S, Pascolo L, Gallo R, Cupelli F, Ostrow JD, Goffeau A, Tiribelli C, Bruschi CV (2000) The products of YCF1 and YLL015w (BPT1) cooperate for the ATP-dependent vacuolar transport of unconjugated bilirubin in Saccharomyces cerevisiae. Yeast 16:561–571

    Article  CAS  PubMed  Google Scholar 

  • Philip B, Levin DE (2001) Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21:271–280

    Article  CAS  PubMed  Google Scholar 

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis (see comments). Nature 389:300–305

    PubMed  Google Scholar 

  • Popoff SC, Spira AI, Johnson AW, Demple B (1990) Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Proc Natl Acad Sci USA 87:4193–4197

    CAS  PubMed  Google Scholar 

  • Povirk LF, Austin MJ (1991) Genotoxicity of bleomycin. Mutat Res 257:127–143

    CAS  PubMed  Google Scholar 

  • Povirk LF, Wubter W, Kohnlein W, Hutchinson F (1977) DNA double-strand breaks and alkali-labile bonds produced by bleomycin. Nucleic Acids Res 4:3573–3580

    CAS  PubMed  Google Scholar 

  • Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126

    CAS  PubMed  Google Scholar 

  • Pron G, Belehradek J Jr, Mir LM (1993) Identification of a plasma membrane protein that specifically binds bleomycin. Biochem Biophys Res Commun 194:333–337

    Article  CAS  PubMed  Google Scholar 

  • Pron G, Mahrour N, Orlowski S, Tounekti O, Poddevin B, Belehradek J Jr, Mir LM (1999) Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism. Biochem Pharmacol 57:45–56

    Article  CAS  PubMed  Google Scholar 

  • Ramotar D, Masson JY (1996) A Saccharomyces cerevisiae mutant defines a new locus essential for resistance to the antitumour drug bleomycin. Can J Microbiol 42:835–843

    CAS  PubMed  Google Scholar 

  • Ramotar D, Popoff SC, Demple B (1991a) Complementation of DNA repair-deficient Escherichia coli by the yeast Apn1 apurinic/apyrimidinic endonuclease gene. Mol Microbiol 5:149–155

    CAS  PubMed  Google Scholar 

  • Ramotar D, Popoff SC, Gralla EB, Demple B (1991b) Cellular role of yeast Apn1 apurinic endonuclease/3′-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol Cell Biol 11:4537–4544

    Google Scholar 

  • Resnick MA, Martin P (1976) The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet 143:119–129

    CAS  PubMed  Google Scholar 

  • Robertson KA, Bullock HA, Xu Y, Tritt R, Zimmerman E, Ulbright TM, Foster RS, Einhorn LH, Kelley MR (2001) Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation. Cancer Res 61:2220–2225

    CAS  PubMed  Google Scholar 

  • Rossi F, Labourier E, Forne T, Divita G, Derancourt J, Riou JF, Antoine E, Cathala G, Brunel C, Tazi J (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381:80–82

    CAS  PubMed  Google Scholar 

  • Sa-Correia I, Tenreiro S (2002) The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol 98:215–226

    Article  CAS  PubMed  Google Scholar 

  • Sander M, Ramotar D (1997) Partial purification of Pde1 from Saccharomyces cerevisiae: enzymatic redundancy for the repair of 3′-terminal DNA lesions and abasic sites in yeast. Biochemistry 36:6100–6106

    Article  CAS  PubMed  Google Scholar 

  • Sausville EA, Peisach J, Horwitz SB (1976) A role for ferrous ion and oxygen in the degradation of DNA by bleomycin. Biochem Biophys Res Commun 73:814–822

    CAS  PubMed  Google Scholar 

  • Sausville EA, Peisach J, Horwitz SB (1978a) Effect of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry 17:2740–2746

    CAS  PubMed  Google Scholar 

  • Sausville EA, Stein RW, Peisach J, Horwitz SB (1978b) Properties and products of the degradation of DNA by bleomycin and iron(II). Biochemistry 17:2746–2754

    CAS  PubMed  Google Scholar 

  • Schwartz DR, Homanics GE, Hoyt DG, Klein E, Abernethy J, Lazo JS (1999) The neutral cysteine protease bleomycin hydrolase is essential for epidermal integrity and bleomycin resistance. Proc Natl Acad Sci USA 96:4680–4685

    Article  CAS  PubMed  Google Scholar 

  • Sebti SM, Lazo JS (1988) Metabolic inactivation of bleomycin analogs by bleomycin hydrolase. Pharmacol Ther 38:321–329

    Article  CAS  PubMed  Google Scholar 

  • Sebti SM, Jani JP, Mistry JS, Gorelik E, Lazo JS (1991) Metabolic inactivation: a mechanism of human tumor resistance to bleomycin. Cancer Res 51:227–232

    CAS  PubMed  Google Scholar 

  • Sikic BI (1986) Biochemical and cellular determinants of bleomycin cytotoxicity. Cancer Surv 5:81–91

    CAS  PubMed  Google Scholar 

  • Steighner RJ, Povirk LF (1990a) Bleomycin-induced DNA lesions at mutational hot spots: implications for the mechanism of double-strand cleavage. Proc Natl Acad Sci USA 87:8350–8354

    CAS  PubMed  Google Scholar 

  • Steighner RJ, Povirk LF (1990b) Effect of in vitro cleavage of apurinic/apyrimidinic sites on bleomycin-induced mutagenesis of repackaged lambda phage. Mutat Res 240:93–100

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Nagai K, Yamaki H, Tanaka N, Umezawa H (1968) Mechanism of action of bleomycin. Studies with the growing culture of bacterial and tumor cells. J Antibiot (Tokyo) 21:379–386

    Google Scholar 

  • Suzuki H, Nagai K, Akutsu E, Yamaki H, Tanaka N (1970) On the mechanism of action of bleomycin. Strand scission of DNA caused by bleomycin and its binding to DNA in vitro. J Antibiot (Tokyo) 23:473–480

    Google Scholar 

  • Tates AD, van Dam FJ, Natarajan AT, Zwinderman AH, Osanto S (1994) Frequencies of HPRT mutants and micronuclei in lymphocytes of cancer patients under chemotherapy: a prospective study. Mutat Res 307:293–306

    CAS  PubMed  Google Scholar 

  • Templin J, Berry L, Lyman S, Byrnes RW, Antholine WE, Petering DH (1992) Properties of redox-inactivated bleomycins. In vitro DNA damage and inhibition of Ehrlich cell proliferation. Biochem Pharmacol 43:615–623

    Article  CAS  PubMed  Google Scholar 

  • Terasima T, Umezawa H (1970) Lethal effect of bleomycin on cultured mammalian cells. J Antibiot (Tokyo) 23:300–304

    Google Scholar 

  • Terasima T, Yasukawa M, Umezawa H (1970) Breaks and rejoining of DNA in cultured mammalian cells treated with bleomycin. Gann 61:513–516

    CAS  PubMed  Google Scholar 

  • Tounekti O, Kenani A, Foray N, Orlowski S, Mir LM (2001) The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway. Br J Cancer 84:1272–1279

    Article  CAS  PubMed  Google Scholar 

  • Umezawa H (1965) Bleomycin and other antitumor antibiotics of high molecular weight. Antimicrobial Agents Chemother 5:1079–1085

    CAS  PubMed  Google Scholar 

  • Umezawa H (1971) Natural and artificial bleomycins: chemistry and antitumor activities. Pure Appl Chem 28:665–680

    CAS  PubMed  Google Scholar 

  • Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) New antibiotics, bleomycin A and B. J Antibiot (Tokyo) 19:200–209

    Google Scholar 

  • Umezawa H, Hori S, Sawa T, Yoshioka T, Takeuchi T (1974) A bleomycin-inactivating enzyme in mouse liver. J Antibiot (Tokyo) 27:419–424

    Google Scholar 

  • Urade M, Ogura T, Mima T, Matsuya T (1992) Establishment of human squamous carcinoma cell lines highly and minimally sensitive to bleomycin and analysis of factors involved in the sensitivity. Cancer 69:2589–2597

    CAS  PubMed  Google Scholar 

  • Vance JR, Wilson TE (2001) Uncoupling of 3′-phosphatase and 5′-kinase functions in budding yeast. Characterization of Saccharomyces cerevisiae DNA 3′-phosphatase (TPP1). J Biol Chem 276:15073–15081

    Article  CAS  PubMed  Google Scholar 

  • Verna J, Lodder A, Lee K, Vagts A, Ballester R (1997) A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:13804–13809

    CAS  PubMed  Google Scholar 

  • Wang H, Ramotar D (2002) Cellular resistance to bleomycin in Saccharomyces cerevisiae is not affected by changes in bleomycin hydrolase levels. Biochem Cell Biol 80:789–796

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang Y, Hyde DM, Gotwals PJ, Lobb RR, Ryan ST, Giri SN (2000) Effect of antibody against integrin alpha4 on bleomycin-induced pulmonary fibrosis in mice. Biochem Pharmacol 60:1949–1958

    Article  CAS  PubMed  Google Scholar 

  • Wemmie JA, Moye-Rowley WS (1997) Mutational analysis of the Saccharomyces cerevisiae ATP-binding cassette transporter protein Ycf1p. Mol Microbiol 25:683–694

    CAS  PubMed  Google Scholar 

  • Wharam MD, Phillips TL, Kane L, Utley JF (1973) Response of a murine solid tumor to in vivo combined chemotherapy and irradiation. Radiology 109:451–455

    CAS  PubMed  Google Scholar 

  • Worth L Jr, Frank BL, Christner DF, Absalon MJ, Stubbe J, Kozarich JW (1993) Isotope effects on the cleavage of DNA by bleomycin: mechanism and modulation. Biochemistry 32:2601–2609

    CAS  PubMed  Google Scholar 

  • Xu HE, Johnston SA (1994) Yeast bleomycin hydrolase is a DNA-binding cysteine protease. Identification, purification, biochemical characterization. J Biol Chem 269:21177–21183

    CAS  PubMed  Google Scholar 

  • Zheng W, Xu HE, Johnston SA (1997) The cysteine-peptidase bleomycin hydrolase is a member of the galactose regulon in yeast. J Biol Chem 272: 30350–30355

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Johnston SA, Joshua-Tor L (1998) The unusual active site of Gal6/bleomycin hydrolase can act as a carboxypeptidase, aminopeptidase, and peptide ligase. Cell 93:103–109

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements.

We thank Andrea Shatilla for critically reading the manuscript. This research was supported by the National Cancer Institute of Canada (NCIC) with funds from the Canadian Cancer Society. D.R. was supported by a career scientist award from the NCIC and presently by a senior fellowship from the Fonds de la Recherche en Sante du Quebec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dindial Ramotar.

Additional information

Communicated by S. Hohmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramotar, D., Wang, H. Protective mechanisms against the antitumor agent bleomycin: lessons from Saccharomyces cerevisiae . Curr Genet 43, 213–224 (2003). https://doi.org/10.1007/s00294-003-0396-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0396-1

Keywords.

Navigation