Skip to main content
Log in

Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We used the chloroplast gene rbcL as a model to study the frequency and relative timing of transfer of chloroplast sequences to the mitochondrial genome. Southern blot survey of 20 mitochondrial DNAs confirmed three previously reported groups of plants containing rbcL in their mitochondrion, while PCR studies identified a new mitochondrial rbcL. Published and newly determined mitochondrial and chloroplast rbcL sequences were used to reconstruct rbcL phylogeny. The results imply five or six separate interorganellar transfers of rbcL among the angiosperms examined, and hundreds of successful transfers across all flowering plants. By taxonomic criteria, the crucifer transfer is the most ancient, two separate transfers within the grass family are of intermediate ancestry, and the morning-glory transfer is most recent. All five mitochondrial copies of rbcL examined exhibit insertion and/or deletion events that disrupt the reading frame (three are grossly truncated); and all are elevated in the proportion of nonsynonymous substitutions, providing clear evidence that these sequences are pseudogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Duvall MR, Morton BR (1996) Molecular phylogenetics of Poaceae: an expanded analysis of rbcL sequence data. Mol Phylogenet Evol 5:352–358

    CAS  PubMed  Google Scholar 

  • Eyre-Walker A, Gaut BS (1997) Correlated substitution rates among plant genomes. Mol Biol Evol 14:455–460

    CAS  PubMed  Google Scholar 

  • Folkerts O, Hanson MR (1989) Three copies of a single recombination repeat occur on the 443 kb mastercircle of the Petunia hybrida 3704 mitochondrial genome. Nucleic Acids Res 17:7345–7357

    CAS  PubMed  Google Scholar 

  • Gaut BS (1998) Molecular clocks and nucleotide substitution rates higher plants. Evol Biol 30:93–120

    CAS  Google Scholar 

  • Gaut BS, Muse SV, Clark W, Clegg MT (1992) Relative substitution at the rbcL locus in monocotyledonous plants. J Mol Evol 35:292–303

    Google Scholar 

  • Gray MW (1983) The bacterial ancestry of plastids and mitochondria. Bioscience 33:693–699

    CAS  Google Scholar 

  • Källersjö M, Farris JS, Chase MW, Bremer B, Fay MF, Humphries CJ, Petersen G, Seberg O, Bremer K (1998) Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Syst Evol 213:259–287

    Google Scholar 

  • Kanno A, Nakazono M, Hirai A, Kameya T (1997) Maintenance of chloroplast-derived sequences in the mitochondrial DNA of Gramineae. Curr Genet 32:413–419

    Article  CAS  PubMed  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and branching order in Hominoidea. J Mol Evol 229:170–179

    Google Scholar 

  • Kolodner R, Tewari KK (1972) Physiochemical characterization of mitochondrial DNA from pea leaves. Proc Natl Acad Sci USA 69:1830–1834

    CAS  PubMed  Google Scholar 

  • Kubo T, Yanai Y, Kinoshita T, Mikami T (1995) The chloroplast trnP-trnW-petG gene cluster in the mitochondrial genomes of Beta vulgaris, B. trigyna and B. webbiana: evolutionary aspects. Curr Genet 27:285–289

    CAS  PubMed  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNACys(GCA) Nucleic Acids Res 28:2571–2576

    Google Scholar 

  • Lonsdale DM (1989) The plant mitochondrial genome. In: Marcus A. (ed) The biochemistry of plants, vol 15. Academic Press, New York, pp 229–295

  • Lonsdale DM, Hodge TP, Howe CJ, Stern DB (1983) Maize mitochondrial DNA contains a sequence homologous to the ribulose-1,5-bisphosphate carboxylase large subunit gene of chloroplast DNA. Cell 34:1007–1014

    CAS  PubMed  Google Scholar 

  • Maeda N, Kitano K, Fukui T, Ezaki S, Atomi H, Miki K, Imanaka T (1999) Ribulose bisphosphate carboxylase/oxygenase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure. J Mol Biol 293:57–66

    Article  CAS  PubMed  Google Scholar 

  • Marienfeld J, Unseld M, Brennicke A (1999) The mitochondrial genome of Arabidopsis is composed of both native and immigrant information. Trends Plant Sci 4:495–502

    PubMed  Google Scholar 

  • Moon E, Kao T-H, Wu R (1987) Rice chloroplast DNA molecules are heterogeneous as revealed by DNA sequences of a cluster of genes. Nucleic Acids Res 15:611–630

    CAS  PubMed  Google Scholar 

  • Nakazono M, Hirai A (1993) Identification of the entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice. Mol Gen Genet 236:341–346

    CAS  PubMed  Google Scholar 

  • Nugent JM, Palmer JD (1988) Location, identity, amount and serial entry of chloroplast DNA sequences in crucifer mitochondrial DNAs. Curr Genet 14:501–509

    CAS  PubMed  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T, Ohyama K (1992) Gene organization deduced for the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. J Mol Biol 223:1–7

    CAS  PubMed  Google Scholar 

  • Olmstead RG, Michaels HJ, Scott KM, Palmer JD (1992) Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann Mo Bot Gard 79:249–265

    Google Scholar 

  • Palmer JD (1992) Comparison of chloroplast and mitochondrial genome evolution in plants. In: Herrmann RG (ed) Cell organelles. Springer, Berlin Heidelberg New York, pp 99–133

  • Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307:437–440

    CAS  Google Scholar 

  • Qiu Y-L, Chase MW, Les DH, Parks CR (1993) Molecular phylogenetics of the Magnoliidae: cladistic analyses of nucleotide sequences of the plastid gene rbcL. Ann Mo Bot Gard 80:587–606

    Google Scholar 

  • Rodman J, Price RA, Karol K, Conti E, Sytsma KJ, Palmer JD (1993) Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants. Ann Mo Bot Gard 80:686–699

    Google Scholar 

  • Schuster W, Brennicke A (1988) Interorganellar sequence transfer: plant mitochondrial DNA is nuclear, is plastid, is mitochondrial. Plant Sci 54:1–10

    Article  CAS  Google Scholar 

  • Sennblad B, Endress ME, Bremer B (1998) Morphology and molecular data in phylogenetic fraternity: the tribe Wrightieae (Apocynaceae) revisited. Am J Bot 85:1143–1158

    CAS  Google Scholar 

  • Siculella L, Palmer JD (1988) Physical and gene organization of mitochondrial DNA in fertile and male sterile sunflower. CMS-associated alterations in structure and transcription of the atpA gene. Nucleic Acids Res 16:3787–3799

    CAS  PubMed  Google Scholar 

  • Siemeister G, Hachtel W (1990) Structure and expression of a gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL) in the colourless euglenoid flagellae Asasia longa. Plant Mol Biol 14:825–833

    Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from a combined data set of 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Article  Google Scholar 

  • Stern DB (1987) DNA transposition between plant organellar genomes. J Cell Sci Suppl 7:145–154

    CAS  PubMed  Google Scholar 

  • Stern DB, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299:698–702

    CAS  PubMed  Google Scholar 

  • Stern DB, Palmer JD (1984) Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc Natl Acad Sci USA 81:1946–1950

    CAS  Google Scholar 

  • Stern DB, Palmer JD (1986) Tripartite mitochondrial genome of spinach: physical structure, mitochondrial gene mapping, and location of transposed chloroplast DNA sequences. Nucleic Acids Res 14:5651–5666

    CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP* 4.0 beta 10. *Phylogenetic analysis using parsimony (and other methods). Sinauer Associates, Sunderland, Mass.

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2002) The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 99:11275–11280

    Article  CAS  PubMed  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genetics 15:57–61

    CAS  PubMed  Google Scholar 

  • Watanabe N, Nakazono M, Kanno A, Tsutsumi N, Hirai A (1994) Evolutionary variations in DNA sequences transferred from chloroplast genomes to mitochondrial genomes in the Gramineae. Curr Genet 26:512–518

    CAS  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 15:555–556

    Google Scholar 

  • Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17:32–43

    CAS  PubMed  Google Scholar 

  • Yang Z, Kumar S, Nei M (1995) A new method of inference of ancestral nucleotide and amino-acid sequences. Genetics 141:1641–1650

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kathy Scott, Colleen Dixon, and Laura McInerney for technical assistance, Robert Price for providing cpDNA rbcL sequences, Maureen Hanson, Kathleen Newton, and Barbara Sears for providing mtDNA samples, David Lonsdale for providing the maize mitochondrial clone pLSH20, Gerard Zurawski for providing sequencing primers, Elizabeth Kellogg for comments on Poaceae relationships, and Lawrence Bogorad and Steven Rodermel for encouragement. This work was supported, in part, by National Institutes of Health grant GM-35087 to J.D.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Cummings.

Additional information

Communicated by F.-A. Wollman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cummings, M.P., Nugent, J.M., Olmstead, R.G. et al. Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms. Curr Genet 43, 131–138 (2003). https://doi.org/10.1007/s00294-003-0378-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0378-3

Keywords

Navigation