Skip to main content
Log in

A novel anti-calcification method for bioprosthetic heart valves using dopamine-modified alginate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Calcification is one of the main causes for bioprosthetic heart valves (BHVs)’ failure. Reported strategies to improve BHVs’ anti-calcification properties only target some of risk factors for calcification. In the current study, we demonstrated dopamine-modified alginate coating served as a protected layer for BHVs’ anti-calcification. Alginate coating was characterized by infrared spectroscopic analysis, ultraviolet spectrophotometer, and water contact angle test. By both high-calcium and high-phosphorus in vitro calcification model and rat subdermal implant in vivo calcification model, our results showed alginate-coated BHVs’ have greatly improved BHVs’ anti-calcification performance due to constant ionic exchange of calcium and sodium. Besides, alginate-coated BHVs did not change BHVs’ mechanical strength and tissue’s shrink temperature. This was the first proof-of-concept study to verify that alginate coating would be a novel method for BHVs’ anti-calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BHVs:

Bioprosthetic heart valves

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

Dop–Alg:

Dopamine-modified alginate

GAGs:

Glycosaminoglycans

GLUT:

Glutaraldehyde

NHS:

N-hydroxysuccinimide

References

  1. Tsao JW, Schoen FJ, Shankar R, Sallis JD, Levy RJ (1988) Retardation of calcification of bovine pericardium used in bioprosthetic heart valves by phosphocitrate and a synthetic analogue. Biomaterials 9:393–397

    Article  CAS  PubMed  Google Scholar 

  2. Kim H, Lu J, Sacks MS, Chandran KB (2006) Dynamic simulation pericardial bioprosthetic heart valve function. J Biomech Eng 128:717–724

    Article  PubMed  Google Scholar 

  3. Vyavahare N, Hirsch D, Lerner E, Baskin JZ, Schoen FJ, Bianco R et al (1997) Prevention of bioprosthetic heart valve calcification by ethanol preincubation efficacy and mechanisms. Circulation 95:479–488

    Article  CAS  PubMed  Google Scholar 

  4. Sacks MS, Schoen FJ (2002) Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res, Part A 62:359–371

    Article  CAS  Google Scholar 

  5. Webb CL, Benedict JJ, Schoen FJ, Linden JA, Levy RJ (1988) Inhibition of bioprosthetic heart valve calcification with aminodiphosphonate covalently bound to residual aldehyde groups. Ann Thorac Surg 46:309–316

    Article  CAS  PubMed  Google Scholar 

  6. Vyavahare N, Ogle M, Schoen FJ, Levy RJ (1999) Elastin calcification and its prevention with aluminum chloride pretreatment. Am J Pathol 155:973–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tripi DR, Vyavahare NR (2014) Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. J Biomater Appl 28:757–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simionescu DT (2004) Prevention of calcification in bioprosthetic heart valves: challenges and perspectives. Expert Opin Biol Ther 4:1971–1985

    Article  CAS  PubMed  Google Scholar 

  9. Vyavahare N, Ogle M, Schoen FJ, Zand R, Gloeckner DC, Sacks M et al (1999) Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. J Biomed Mater Res 46:44–50

    Article  CAS  PubMed  Google Scholar 

  10. Simionescu DT, Lovekamp JJ, Vyavahare NR (2003) Glycosaminoglycan-degrading enzymes in porcine aortic heart valves: implications for bioprosthetic heart valve degeneration. J Heart Valve Dis 12:217–225

    PubMed  Google Scholar 

  11. Shah SR, Vyavahare NR (2008) The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves. Biomaterials 29:1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jorge-Herrero E, Garcia Paez JM, Jl COR (2005) Tissue heart valve mineralization: review of calcification mechanisms and strategies for prevention. J Appl Biomater Biomech 3:67–82

    CAS  PubMed  Google Scholar 

  13. Golomb G, Dixon M, Smith MS, Schoen FJ, Levy RJ (1987) Controlled-release drug delivery of diphosphonates to inhibit bioprosthetic heart valve calcification: release rate modulation with silicone matrices via drug solubility and membrane coating. J Pharm Sci 76:271–276

    Article  CAS  PubMed  Google Scholar 

  14. Levy RJ, Schoen FJ, Lund SA, Smith MS (1987) Prevention of leaflet calcification of bioprosthetic heart valves with diphosphonate injection therapy. Experimental studies of optimal dosages and therapeutic durations. J Thorac Cardiovasc Surg 94:551–557

    CAS  PubMed  Google Scholar 

  15. Simionescu D, Simionescu A, Deac R (1993) Mapping of glutaraldehyde-treated bovine pericardium and tissue selection for bioprosthetic heart valves. J Biomed Mater Res 27:697–704

    Article  CAS  PubMed  Google Scholar 

  16. Guldner NW, Girndt B, Zimmermann H, Bastian F, Weigel G, Noel R et al (2011) Titanium coating of glutaraldehyde-fixed heart valve prostheses enables a reduced immune response and a self-seeding within circulation. Thorac Cardiovasc Surg 59:V231

    Article  Google Scholar 

  17. Sacks MS (2001) The biomechanical effects of fatigue on the porcine bioprosthetic heart valve. J Long-term Eff Med Implants 11:231

    Article  CAS  PubMed  Google Scholar 

  18. Sacks MS, Schoen FJ (2002) Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res 62:359–371

    Article  CAS  PubMed  Google Scholar 

  19. Arcidiacono G, Corvi A, Severi T (2005) Functional analysis of bioprosthetic heart valves. J Biomech 38:1483–1490

    Article  CAS  PubMed  Google Scholar 

  20. Wee S, Gombotz WR (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267

    Article  CAS  PubMed  Google Scholar 

  21. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimmermann U, Klöck G, Federlin K, Hannig K, Kowalski M, Bretzel RG et al (1992) Production of mitogen-contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis. Electrophoresis 13:269–274

    Article  CAS  PubMed  Google Scholar 

  23. Orive G, Ponce S, Hernandez RM, Gascon AR, Igartua M, Pedraz JL (2002) Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 23:3825–3831

    Article  CAS  PubMed  Google Scholar 

  24. Lee J, Lee KY (2009) Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system. Pharm Res 26:1739

    Article  CAS  PubMed  Google Scholar 

  25. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198

    Article  CAS  Google Scholar 

  26. Crow BB, Nelson KD (2006) Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber. Biopolymers 81:419

    Article  CAS  PubMed  Google Scholar 

  27. Bruchet M, Melman A (2015) Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. Carbohydr Polym 131:57–64

    Article  CAS  PubMed  Google Scholar 

  28. Wang W, Zhang A, Liu L, Tian M, Zhang L (2011) Dopamine-induced surface functionalization for the preparation of Al–Ag bimetallic microspheres. J Electrochem Soc 158:D228

    Article  CAS  Google Scholar 

  29. Youyi XU, Jiang J, Zhu L, Zhu B (2011) Self-polymerization-adhesion behavior of dopamine and surface functionalization of membranes. Membr Sci Technol 31:32–38

    Google Scholar 

  30. Fu Y, Li G, Tian M, Wang X, Zhang L, Wang W (2014) Preparation of silver nanoparticle immobilized fibrillar silicate by poly(dopamine) surface functionalization. J Appl Polym Sci 131:1082–1090

    Google Scholar 

  31. Black KC, Yi J, Rivera JG, Zelasko-Leon DC, Messersmith PB (2013) Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine 8:17–28

    Article  CAS  PubMed  Google Scholar 

  32. Hu W, Lu S, Ma Y, Ren P, Ma X, Zhou N et al (2016) Poly(dopamine)-inspired surface functionalization of polypropylene tissue mesh for prevention of intra-peritoneal adhesion formation. Journal of Materials Chemistry B. 5:575–585

    Article  CAS  PubMed  Google Scholar 

  33. Luo R, Wang X, Deng J, Zhang H, Maitz MF, Yang L et al (2016) Dopamine-assisted deposition of poly (ethylene imine) for efficient heparinization. Colloids Surf B Biointerfaces 144:90–98

    Article  CAS  PubMed  Google Scholar 

  34. Yang H, Dan W, Xiong S, Yang K, Dhinakar A, Wu J et al (2017) Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold. Acta Biomater 47:135–148

    Article  CAS  Google Scholar 

  35. Lee C, Shin J, Lee JS, Byun E, Ryu JH, Um SH et al (2013) Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromol 14:2004–2013

    Article  CAS  Google Scholar 

  36. Loke WK, Khor E (1995) Validation of the shrinkage temperature of animal tissue for bioprosthetic heart valve application by differential scanning calorimetry. Biomaterials 16:251–258

    Article  CAS  PubMed  Google Scholar 

  37. Leong J, Munnelly A, Liberio B, Cochrane L, Vyavahare N (2013) Neomycin and carbodiimide crosslinking as an alternative to glutaraldehyde for enhanced durability of bioprosthetic heart valves. J Biomater Appl 27:948

    Article  PubMed  Google Scholar 

  38. Raghavan D, Dan TS, Vyavahare NR (2007) Neomycin prevents enzyme-mediated glycosaminoglycan degradation in bioprosthetic heart valves. Biomaterials 28:2861–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raghavan D, Starcher BC, Vyavahare NR (2009) Neomycin binding preserves extracellular matrix in bioprosthetic heart valves during in vitro cyclic fatigue and storage. Acta Biomater 5:983–992

    Article  CAS  PubMed  Google Scholar 

  40. Tam H, Zhang W, Feaver KR, Parchment N, Sacks MS, Vyavahare N (2015) A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials 66:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen M, Marie P, Farge D, Carpentier S, De PC, Hott M et al (1997) Osteopontin is associated with bioprosthetic heart valve calcification in humans. C R Acad Sci III 320:49–57

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki Y, Tanihara M, Nishimura Y, Suzuki K, Yamawaki Y, Kudo H et al (2015) In vivo evaluation of a novel alginate dressing. J Biomed Mater Res Part B Appl Biomater 48:522–527

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (31700833), Young Elite Scientists Sponsorship Program by CAST (2017QNRC001), the Fundamental Research Funds for the Central Universities (YJ201641), National Key Research and Development Programs (2017YFC1104200, 2016YFC1102200), and the Program of Introducing Talents of Discipline to Universities (111 Project, No. B16033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Lei or Yunbing Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

A. UV spectrophotometer for dopamine. B. The optimization of concentration for Dop-Alg solution. N = 3(three independent experiments) (PPTX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Su, X., Lei, Y. et al. A novel anti-calcification method for bioprosthetic heart valves using dopamine-modified alginate. Polym. Bull. 76, 1423–1434 (2019). https://doi.org/10.1007/s00289-018-2450-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2450-7

Keywords

Navigation