Skip to main content
Log in

A multi-time-scale analysis of chemical reaction networks: I. Deterministic systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider deterministic descriptions of reaction networks in which different reactions occur on at least two distinct time scales. We show that when a certain Jacobian is nonsingular there is a coordinate system in which the evolution equations for slow and fast variables are separated, and we obtain the appropriate initial conditions for the transformed system. We also discuss topological properties which guarantee that the nonsingularity condition is satisfied, and show that in the new coordinate frame the evolution of the slow variables on the slow time scale is independent of the fast variables to lowest order in a small parameter. Several examples that illustrate the numerical accuracy of the reduction are presented, and an extension of the reduction method to three or more time scale networks is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aris R (1965) Prolegomena to the rational analysis of chemical reactions. Arch Ration Mech Anal 19(2): 81–99

    Article  MathSciNet  Google Scholar 

  • Acrivos A, Bowen J, Oppenheim A (1963) Singular perturbation refinement to quasi-steady state approximation in chemical kinetics. Chem Eng Sci 18: 177–188

    Article  Google Scholar 

  • Chen WK (1971) Applied graph theory. North-Holland series in applied mathematics and mechanics, vol 13. North-Holland, Amsterdam

    Google Scholar 

  • Fraser SJ (1988) The steady state and equilibrium approximations: a geometrical picture. J Chem Phys 88: 4732

    Article  Google Scholar 

  • Gadgil C, Lee CH, Othmer HG (2005) A stochastic analysis of first-order reaction networks. Bull Math Biol 67: 901–946

    Article  MathSciNet  Google Scholar 

  • Gibbons A (1985) Algorithmic graph theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Gorban AN, Karlin IV (2003) Method of invariant manifold for chemical kinetics. Chem Eng Sci 58(21): 4751–4768

    Article  Google Scholar 

  • Goussis DA, Valorani M (2006) An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems. J Comput Phys 214(1): 316–346

    Article  MATH  MathSciNet  Google Scholar 

  • Haseltine EL, Rawlings JB (2002) Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J Chem Phys 117(15): 6959

    Article  Google Scholar 

  • Heineken F, Tsuchiya H, Aris R (1967) On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Math Biosci 1: 95–113

    Article  Google Scholar 

  • Horn F (1972) Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch Ration Mech Anal 49(3): 172–186

    Article  MathSciNet  Google Scholar 

  • Horn F, Jackson R (1972) General mass action kinetics. Arch Ration Mech Anal 48: 81

    MathSciNet  Google Scholar 

  • Kijma H, Kijima S (1982) Steady/equilibrium approximation in relaxation and fluctuation. Biophys Chem 16: 181–192

    Article  Google Scholar 

  • King EL, Altman C (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J Phys Chem 60(10): 1375–1378

    Article  Google Scholar 

  • Kistiakowsky GB, Shaw WHR (1953) On the mechanism of the inhibition of Urease. J Am Chem Soc 75(4): 866–871

    Article  Google Scholar 

  • Kumar A, Daoutidis P (1999) Control of nonlinear differential algebraic equation systems. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Lam SH (1993) Using CSP to understand complex chemical kinetics. Combust Sci Technol 89(5): 375–404

    Article  Google Scholar 

  • Lam SH, Goussis DA (1994) The CSP method for simplifying kinetics. Int J Chem Kinet 26(4): 461–486

    Article  Google Scholar 

  • Lin CC, Segel LA (1988) Mathematics applied to deterministic problems in the natural sciences. SIAM

  • Maas U, Pope SB (1992) Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust Flame 88(3–4): 239–264

    Article  Google Scholar 

  • Othmer HG (1976) Nonuniqueness of equilibria in closed reacting systems. Chem Eng Sci 31: 993–1003

    Article  Google Scholar 

  • Othmer HG (1979) A graph-theoretic analysis of chemical reaction networks. Lecture Notes, Rutgers University—available at http://www.math.umn.edu/~othmer/graphrt.pdf

  • Othmer HG (1981) The interaction of structure and dynamics in chemical reaction networks. In: Ebert KH, Deuflhard P, Jager W (eds) Modelling of chemical reaction systems. Springer, New York, pp 1–19

    Google Scholar 

  • Othmer HG, Aldridge JA (1978) The effects of cell density and metabolite flux on cellular dynamics. J Math Biol 5: 169–200

    MATH  MathSciNet  Google Scholar 

  • Park DJ (1974) The hierarchical structure of metabolic networks and the construction of efficient metabolic simulators. J Theor Biol 46(1): 31–74

    Article  Google Scholar 

  • Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative structures. J Chem Phys 48: 1695–1700

    Article  Google Scholar 

  • Srivastava JSR, You L, Yin J (2002) Stochastic versus deterministic modeling of intracellular viral kinetics. J Theor Biol 218: 309–321

    Article  MathSciNet  Google Scholar 

  • Roussel MR, Fraser SJ (1990) Geometry of the steady-state approximation: Perturbation and accelerated convergence methods. J Chem Phys 93: 1072

    Article  Google Scholar 

  • Roussel MR, Fraser SJ (1991) On the geometry of transient relaxation. J Chem Phys 94: 7106

    Article  Google Scholar 

  • Roussel MR, Fraser SJ (2001) Invariant manifold methods for metabolic model reduction. Chaos Interdiscip J Nonlinear Sci 11: 196

    Article  MATH  Google Scholar 

  • Segel LA, Slemrod M (1982) The quasi-steady-state assumption: a case study in perturbation. Biophys Chem 16: 181–192

    Article  Google Scholar 

  • Snow RH (1966) A chemical kinetics computer program for homogeneous and free-radical systems of reactions. J Phys Chem 70(9): 2780–2786

    Article  Google Scholar 

  • Stiefenhofer M (1998) Quasi-steady-state approximation for chemical reaction networks. J Math Biol 36: 593–609

    Article  MATH  MathSciNet  Google Scholar 

  • Tikhonov AN (1952) Systems of differential equations containing small parameters in the derivatives. Matematicheskii Sbornik 73(3): 575–586

    MathSciNet  Google Scholar 

  • Valorani M, Creta F, Goussis DA, Lee JC, Najm HN (2006) An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP. Combust Flame 146(1–2): 29–51

    Article  Google Scholar 

  • Kaper ZA, Kaper TJ (2004) Fast and slow dynamics for the computational singular perturbation method. Multiscale Model Simul 2(4): 613–638

    Article  MATH  MathSciNet  Google Scholar 

  • Zagaris A, Kaper HG, Kaper TJ (2004) Analysis of the computational singular perturbation reduction method for chemical kinetics. J Nonlinear Sci 14(1): 59–91

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Hyeong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.H., Othmer, H.G. A multi-time-scale analysis of chemical reaction networks: I. Deterministic systems. J. Math. Biol. 60, 387–450 (2010). https://doi.org/10.1007/s00285-009-0269-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0269-4

Keywords

Mathematics Subject Classification (2000)

Navigation