Skip to main content

Advertisement

Log in

Monotone dependence of the spectral bound on the transition rates in linear compartment models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

For linear compartment models or Leslie-type staged population models with quasi-positive matrix the spectral bound of the matrix (the eigenvalue determining stability) is studied in the situation where particles or individuals leave a compartment or stage with some rate and enter another with the same rate. Then the matrix carries the rate with a positive sign in some off-diagonal entry and with a negative sign in the corresponding diagonal entry. Hence the matrix does not depend on the rate in a monotone way. It is shown, however, that the spectral bound is a monotone function of the rate. It is all the time strictly increasing or strictly decreasing or it is constant. A simple algebraic criterion distinguishes between the three cases. The results can be applied to linear systems and to the stability of stationary states in non-linear systems, in particular to models for the transmission of infectious diseases, and in population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson R.M., May R.M.: Population biology of infectious diseases. Part I. Nature 280, 361–367 (1979)

    Article  Google Scholar 

  2. Boldin B.: Introducing a population into a steady community: the critical case, the center manifold, and the direction of bifurcation. SIAM J. Appl. Math. 66, 1424–1453 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohen J.E.: Convexity of the dominant eigenvalue of an essentially nonnegative matrix. Proc. Am. Math. Soc. 81, 657–658 (1981)

    Article  MATH  Google Scholar 

  4. Diekmann O., Heesterbeek J.A.P.: Mathematical Epidemiology of Infectious Diseases. Wiley, New York (2000)

    Google Scholar 

  5. Faeth S.H., Hadeler K.P., Thieme H.R.: An apparent paradox of horizontal and vertical disease transmission. J. Biol. Dyn. 1, 45–62 (2007)

    Article  MathSciNet  Google Scholar 

  6. Hadeler K.P.: Quiescent phases and stability. Lin. Alg. Appl. 428, 1620–1627 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hadeler K.P., Hillen T.: Coupled dynamics and quiescent phases. In: Alletti, G., Burger, M., Micheletti, A., Morale, D.(eds) Math Everywhere: Deterministic and Stochastic Modelling in Biomedicine, Economics and Industry, pp. 7–23. Springer, New York (2007)

    Google Scholar 

  8. Hyman J.M., Li J., Stanley E.A.: The differential infectivity and staged progression models for the transmission of HIV. Math. Biosci. 155, 77–109 (1999)

    Article  MATH  Google Scholar 

  9. Kato T.: Superconvexity of the spectral radius, and convexity of the spectral bound and the type. Math. Z. 180, 265–273 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kingman J.F.C.: A convexity property of positive matrices. Q. J. Math. Oxf. Ser. 2, 283–284 (1961)

    Article  Google Scholar 

  11. Malik T., Smith H.L.: A resource-based model of microbial quiescence. J. Math. Biol. 53, 231–252 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Müller J., Hadeler K.P.: Monotonicity of the number of passages in linear chains and of the basic reproduction number in epidemic models. Z. Anal. Anwendungen 19, 61–75 (2000)

    MATH  MathSciNet  Google Scholar 

  13. Nussbaum R.D.: Convexity and log convexity of the spectral radius. Lin. Alg. Appl. 73, 59–122 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tam B.-S., Schneider H.: Linear equations over cones and Collatz-Wielandt numbers. Lin. Alg. Appl. 363, 295–332 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. , : Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations. Math. Biosci. 111, 99–130 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. van den Driessche P., Watmough J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Webb G.F.: Convexity of the growth bound of C 0-semigroups of operators. In: Goldstein, G.R., Goldstein, J.A.(eds) Semigroups of Linear Operators and Applications, pp. 259–270. Kluwer, Dordrecht (1993)

    Google Scholar 

  18. Weinberger H.F.: Remark on the preceding paper by Lax. Comm. Pure Appl. Math. 11, 195–196 (1958)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Thieme.

Additional information

K. P. Hadeler was supported by NSF Grant DMS-0502349.

H. R. Thieme was supported by NSF Grants DMS-0314520 and DMS-0715451.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadeler, K.P., Thieme, H.R. Monotone dependence of the spectral bound on the transition rates in linear compartment models. J. Math. Biol. 57, 697–712 (2008). https://doi.org/10.1007/s00285-008-0185-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0185-z

Keywords

Mathematics Subject Classification (2000)

Navigation