Skip to main content
Log in

Optimizing selection for function-valued traits

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a function-valued trait z(t) whose pre-selection distribution is Gaussian, and a fitness function W that models optimizing selection, subject to certain natural assumptions. We show that the post-selection distribution of z(t) is also Gaussian, compute the selection differential, and derive an equation that expresses the selection gradient in terms of the parameters of W and of the pre-selection distribution. We make no assumptions on the nature of the ‘time–parameter t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold S.J. and Wade M.J. (1984). On the measurement of natural and sexual selection: theory. Evolution 38: 709–20

    Article  Google Scholar 

  2. Aronszajn N. (1950). Theory of reproducing kernels. Trans. Am. Math. Soc. 68: 337–04

    Article  MATH  MathSciNet  Google Scholar 

  3. Beder J.H. (1987). A sieve estimator for the mean of a Gaussian process. Ann. Stat. 15: 59–8

    Article  MATH  MathSciNet  Google Scholar 

  4. Beder J.H. and Gomulkiewicz R. (1998). Computing the selection gradient and evolutionary response of an infinite-dimensional trait. J. Math. Biol. 36: 299–19

    Article  MATH  MathSciNet  Google Scholar 

  5. Bürger R. (2000). The Mathematical Theory of Selection, Recombination and Mutation. Wiley, West Sussex

    MATH  Google Scholar 

  6. Cartier P. (1981). Une étude des covariances mesurables. In: Nachbin, L. (eds) Mathematical Analysis and Applications, Part A, pp. Academic Press, New York

    Google Scholar 

  7. Feldman, J.: Equivalence and perpendicularity of Gaussian processes. Pac. J. Math. 9, 699–08 (1958). Correction 10, 1295–296 (1959)

    Google Scholar 

  8. Fortet R. (1973). Espaces à noyau reproduisant et lois de probabilités des fonctions aléatoires. Annales de l’Institut Henri Poincaré. Sect. B, Calcul des Probabilités et Statistique IX(1): 41–8

    MathSciNet  Google Scholar 

  9. Fortet R. (1974). Espaces à noyau reproduisant et lois de probabilités des fonctions aléatoires. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Série A, Sciences Mathematiques 278: 1439–440

    MATH  MathSciNet  Google Scholar 

  10. Gilchrist G.W., Huey R.B., Balanyà J., Pascual M. and Serra L. (2004). A time series of evolution in action: latitudinal cline in wing size in South American Drosophila subobscura. Evolution 58: 768–80

    Google Scholar 

  11. Gomulkiewicz R. and Beder J.H. (1996). The selection gradient of an infinite-dimensional trait. SIAM J. Appl. Math. 56: 509–23

    Article  MATH  MathSciNet  Google Scholar 

  12. Heckman N.E. (2003). Functional data analysis in evolutionary biology. In: Akritas, M.G. and Politis, D.N. (eds) Recent Advances and Trends in Nonparametric Statistics, pp. Elsevier, Amsterdam

    Google Scholar 

  13. Kingsolver J.G., Hoekstra H.E., Hoekstra J.M., Berrigan D., Vignieri S.N., Hill C.H. and Hoang A. (2001). The strength of phenotypic selection in natural populations. Am. Nat. 157: 245–61

    Article  Google Scholar 

  14. Kingsolver J.G., Gomulkiewicz R. and Carter P.A. (2001). Variation, selection and evolution of function-valued traits. Genetica 112: 87–04

    Article  Google Scholar 

  15. Kingsolver J.G., Ragland G.J. and Shlichta J.G. (2004). Quantitative genetics of continuous reaction norms: Thermal sensitivity of caterpillar growth rates. Evolution 58: 1521–529

    Google Scholar 

  16. Kirkpatrick M. and Heckman N. (1989). A quantitative genetic model for growth, shape, reaction norms and other infinite-dimensional characters. J. Math. Biol. 27: 429–50

    Article  MATH  MathSciNet  Google Scholar 

  17. Lande R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution 30: 314–34

    Article  Google Scholar 

  18. Lande R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33: 402–16

    Article  Google Scholar 

  19. Lande R. (1980). Genetic variation and phenotypic evolution during allopatric speciation. Am. Nat. 116: 463–79

    Article  MathSciNet  Google Scholar 

  20. Lande R. and Arnold S.J. (1983). The measurement of selection on correlated characters. Evolution 37: 1210–226

    Article  Google Scholar 

  21. Lukić, M.N.: Stochastic processes having sample paths in reproducing kernel Hilbert spaces with an application to white noise analysis. PhD Thesis, University of Wisconsin, Milwaukee (1996)

  22. Lukić M.N. and Beder J.H. (2001). Stochastic processes with sample paths in reproducing kernel Hilbert spaces. Trans. Am. Math. Soc. 353(10): 3945–969

    Article  MATH  Google Scholar 

  23. Mezey J.G., Houle D. and Nuzhdin S.V. (2005). Naturally segregating quantitative trait loci affecting wing shape of Drosophila melanogaster. Genetics 169: 2101–113

    Article  Google Scholar 

  24. Neveu, J.: Processus Aléatoires Gaussiens. Publications du Séminaire de Mathématiques Supérieures. Les Presses de l’Université de Montréal (1968)

  25. Pearson K. (1903). Mathematical contributions to the theory of evolution. XI. On the influence of natural selection on the variability and correlation of organs. Philos. Trans. R. Soc. Lond. Ser. A 200: 1–6

    Article  Google Scholar 

  26. Pletcher S.D. and Geyer C.J. (1999). The genetic analysis of age-dependent traits: Modeling the character process. Genetics 153: 825–35

    Google Scholar 

  27. Ragland G.J. and Carter P.A. (2004). Genetic covariance structure of growth in the salamander Ambystoma macrodactylum. Heredity 92: 569–78

    Article  Google Scholar 

  28. Schmitt J., Stinchcombe J.R., Heschel M.S. and Huber H. (2003). The adaptive evolution of plasticity: Phytochrome-mediated shade avoidance responses. Integr. Comp. Biol. 43: 459–69

    Article  Google Scholar 

  29. Travis J. (1989). The role of optimizing selection in natural populations. Annu. Rev. Ecol. Syst. 20: 279–96

    Article  Google Scholar 

  30. Ward J.K. and Kelly J.K. (2004). Scaling up evolutionary responses to elevated CO2: lessons from Arabidopsis. Ecol. Lett. 7: 427–40

    Article  Google Scholar 

  31. Young S.S.Y. and Weiler H. (1960). Selection for two correlated traits by independent culling levels. J. Genet. 57: 329–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay H. Beder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beder, J.H., Gomulkiewicz, R. Optimizing selection for function-valued traits. J. Math. Biol. 55, 861–882 (2007). https://doi.org/10.1007/s00285-007-0114-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0114-6

Keywords

Mathematics Subject Classification (2000)

Navigation