Skip to main content
Log in

Evaluation of BOX-PCR and REP-PCR as Molecular Typing Tools for Antarctic Streptomyces

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Molecular studies led to the resurgence of natural products research from genus Streptomyces, already known for their long history and importance for the pharmaceutical industry. However, species belonging to this genus are difficult to identify and the most commonly used techniques, which are based on 16S rRNA sequencing, do not discriminate between related species. In this work, amplification profiles generated from BOX-PCR and REP-PCR of 49 Antarctic soil streptomycetes were compared to evaluate the diversity present in the group and to characterize the bacterial isolates, along with some 16S rRNA amplifications. The BOX-A1R primer exhibit clearer amplification fragments, different from the amplification patterns obtained using the REP 1R and 2R primers. A higher diversity was observed with REP-PCR amplifications, even though a larger number of fragments was obtained with BOX-A1R primer amplifications. There are at least four isolates that showed great similarity (about 90%) in both techniques. In other hand, there are two others that are 90% similar in BOX-PCR, but distant in REP-PCR, showing only 40% of similarity. Results of the combination of BOX-PCR and REP-PCR represent a simple and low-cost method to discriminate between Streptomyces strains. There is no species identification with only the 16S rRNA, most isolates seem to be related to S. globisporus. Further studies added to the obtained results may provide better data to help the characterization of these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Diminic J, Starcevic A, Lisfi M, Baranasic D, Gacesa R, Hranueli D, Long PF, Cullum J, Zucko J (2013) Evolutionary concepts in natural products discovery: what actinomycetes have taught us. J Ind Microbiol Biotechnol 41:211–217. https://doi.org/10.1007/s10295-013-1337-8

    Article  CAS  PubMed  Google Scholar 

  2. Busti E, Monciardini P, Cavaletti L, Bamonte R, Lazzarini A, Sosio M, Donadio S (2006) Antibiotic-producing ability by representatives of the newly discovered lineage of actinomycetes. Microbiology 152:675–683. https://doi.org/10.1099/mic.0.28335-0

    Article  CAS  PubMed  Google Scholar 

  3. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384. https://doi.org/10.1039/b817069j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu R, Deng Z, Liu T (2018) Streptomyces species: ideal chassis for natural product discovery and overproduction. Metab Eng 50:74–84. https://doi.org/10.1016/j.ymben.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  5. Cheah YK, Lee LH, Chieng CYC, Wong VL (2015) Isolation, identification and screening of Actinobacteria in volcanic soil of Deception Island (the Antarctic) for antimicrobial metabolites. Pol Polar Res 36:67–78. https://doi.org/10.1515/popore−2015−0001

    Article  Google Scholar 

  6. Barka EA, Vasta P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, Wezel GP (2015) Taxonomy, physiology and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43. https://doi.org/10.1128/MMBR.00019-15

    Article  PubMed  PubMed Central  Google Scholar 

  7. Antony-Babu S, Stien D, Eparvier V, Parrot D, Tomasi S, Suzuki MT (2017) Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences. Sci Rep. https://doi.org/10.1038/s41598-017-11363-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stern MJ, Ames GF-L, Smith NH, Robinson EC, Higgins CF (1984) Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 34:1015–1026. https://doi.org/10.1016/0092-8674(84)90436-7

    Article  Google Scholar 

  9. Martin B, Humbert O, Chamber M, Guenzi E, Walker J, Mitchell T, Andrew P, Prudhomme M, Alloing G, Hakenbeck R, Morrison DA, Boulnois GJ, Claverys JP (1992) A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 20:3479–3843. https://doi.org/10.1093/nar/20.13.3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Michelim L, Muller G, Zacaria J, Delamare APL, Costa SOP, Echeverrigaray S (2008) Comparison of PCR-based molecular markers for the characterization of Proteus mirabilis clinical isolates. Braz J Infect Dis 12:423–429. https://doi.org/10.1590/s1413-86702008000500014

    Article  CAS  PubMed  Google Scholar 

  11. Korvin D, Graydon C, McNeil L, Mroczek M (2014) Banding profile of Rep-PCR experiments with varying extension times and annealing temperatures. JEMI 18:146–149

    Google Scholar 

  12. Lanoot B, Vancanneyt M, Dawyndt P, Cnockaert M, Zhang J, Huang Y, Liu Z, Swings J (2004) BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst Appl Microbiol 27:84–92. https://doi.org/10.1078/0723-2020-00257

    Article  CAS  PubMed  Google Scholar 

  13. Borba MP (2016) Characterization of actinobacterial isolates using BOX-PCR and URP-PCR and purification of bioactive compound produced by a Streptomyces sp. Dissertation, Universidade Federal do Rio Grande do Sul

  14. Bratchkova A, Ivanova V (2011) Bioactive metabolites produced by microorganisms collected in Antarctica and the Artic. Biotechnol Biotechnol Equip 25:1–7. https://doi.org/10.5504/BBEQ.2011.0116

    Article  Google Scholar 

  15. Encheva-Malinova M, Stoyanova M, Avramova H, Pavlova Y, Gocheva B, Ivanova I, Moncheva P (2014) Antibacterial potential of streptomycete strains from Antarctic soils. Biotechnol Biotechnol Equip 28:721–727. https://doi.org/10.1080/13102818.2014.947066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lamilla C, Braga D, Castro R, Guimarães C, Castile LVA, Freire DMG, Barrientos L (2018) Streptomyces luridus So3.2 from Antartic soil as a novel producer of compoundds with bioemulsification potential. PLoS One. https://doi.org/10.1371/journal.pone.0196054

    Article  PubMed  PubMed Central  Google Scholar 

  17. Amaro E, Padeiro A, Ferro AM, Mota AM, Leppe M, Verkulich S, Hughes KA, Peter HU, Canário J (2015) Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic. Mar Pollut Bull 97:523–527. https://doi.org/10.1016/j.marpolbul.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  18. Edwards U, Rogall T, Blöcker H, Böttger E (1989) Isolation and direct complete nucleotide determination of entire genes, characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. https://doi.org/10.1093/nar/17.19.7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang L, Wang S, He Q, Yu T, Li Q, Hong B (2012) Draft genome sequence of Streptomyces globisporus C-1027, which produces an antitumor antibiotic consisting of a nine-membered enediyne with a chromoprotein. J Bacteriol. https://doi.org/10.1128/JB.00797-12

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maciejewska M, Adam D, Martinet L, Naômé A, Całusińska M, Delfosse P, Carnol M, Barton HA, Hayette MP, Smargiasso N, De Pauw E, Hanikenne M, Baurain D, Rigali S (2016) A phenotypic and genotypic analysis of the antimicrobial potential of cultivable Streptomyces isolated from cave moonmilk deposits. Front Microbiol 21(1):1455. https://doi.org/10.3389/fmicb.2016.01455

    Article  Google Scholar 

  21. Matter AM, Hoot SB, Anderson PD, Neves SS, Cheng YQ (2009) Valinomycin biosynthetic gene cluster in Streptomyces: conservation, ecology and evolution. PLoS One. https://doi.org/10.1371/journal.pone.0007194

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jin F, Ding Y, Ding W, Reddy MS, Fernando WG, Du B (2011) Genetic diversity and phylogeny of antagonistic bacteria against Phytophthora nicotianae isolated from tobacco rhizosphere. Int J Mol Sci. https://doi.org/10.3390/ijms12053055

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lavin PL, Yong ST, Wong CMVL, Stefano M (2016) Isolation and characterization of Antarctic psychrotroph Streptomyces sp. strain INACH3013. Antarct Sci. https://doi.org/10.1017/S0954102016000250

    Article  Google Scholar 

  24. Durán P, Barra PJ, Jorquera MA, Viscardi S, Fernandez C, Paz C, Mora ML, Bol R (2019) Occurrence of soil fungi in Antarctic pristine environments. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00028

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martinez A, Cavello I, Garmendia G, Rufo C, Cavalito S, Vero S (2016) Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms. Extremophiles 20:759–769. https://doi.org/10.1007/s00792-016-0865-3

    Article  CAS  PubMed  Google Scholar 

  26. Chapaval L, Moon D, Gomes J, Duarte F, Tsai S (2006) Using the REP-PCR technique in the tracking of Staphylococcus aureus in a milking room, for milk quality production. Braz J Vet Res Anim Sci 43:309–320. https://doi.org/10.11606/issn.1678-4456.bjvras.2006.26478

    Article  Google Scholar 

  27. Yang A, Yen C (2012) PCR optimization of BOX-A1R PCR for microbial source tracking of Escherichia coli in waterways. JEMI 16:58–89

    Google Scholar 

  28. Martin FH, Castro MM, Aboul-she F, Tinoco I (1985) Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res 13:8927–8938. https://doi.org/10.1093/nar/13.24.8927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Versalovic J, Lupski JR (1998) Interspersed repetitive sequences in bacterial genomes. In: Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial genomes—physical structure and analysis. Springer Link, New York, pp 38–48

    Chapter  Google Scholar 

  30. Lipman LJA, de Nijs A, Lam TJGM, Gaastra W (1995) Identification of Escherichia coli strains from clinical mastitis by serotyping and DNA polymorphism patterns with REP and ERIC primers. Vet Microbiol 43:13–19. https://doi.org/10.1016/0378-1135(94)00070-d

    Article  CAS  PubMed  Google Scholar 

  31. Chen Z, Ou P, Liu L, Jin X (2020) Anti-MRSA activity of actinomycin X2 and collismycin A produced by Streptomyces globisporus WA5-2-37 from the intestinal tract of American Cockroach (Periplaneta americana). Front Microbiol. https://doi.org/10.3389/fmicb.2020.00555

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rangseekaew P, Pathom-aree W (2019) Cave Actinobacteria as producers of bioactive metabolites. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00387

    Article  PubMed  PubMed Central  Google Scholar 

  33. Al-Dhabi NA, Ghilan AM, Esmail GA, Arasu MV, Duraipandiyan V, Ponmurugan K (2019) Environmental friendly synthesis of silver nanomaterials from the promising Streptomyces parvus strain Al-Dhabi-91 recovered from the Saudi Arabian marine regions for antimicrobial and antioxidant properties. J Photochem Photobiol B. https://doi.org/10.1016/j.jphotobiol.2019.111529

    Article  PubMed  Google Scholar 

  34. Gonzalez-Pimentel JL, Jurado V, Laiz L, Saiz-Jimenez C (2019) Draft genome sequence of a Granaticin-producing strain of Streptomyces parvus isolated from a Roman Tomb in the Necropolis of Carmona, Spain. Microbiol Resour Announc. https://doi.org/10.1128/MRA.01127-19

    Article  PubMed  PubMed Central  Google Scholar 

  35. Núñez-Monteiro K, Lamilla C, Abanto M, Maruyama F, Jorquera MA, Santos A, Martinez-Urtaza J, Barrientos L (2019) Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Sci Rep. https://doi.org/10.1038/s41598-019-43960-7

    Article  Google Scholar 

  36. Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the clade Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijs.0.65224-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) by the grants receveid. The author also thanks to Voltaire Neto for the figures artwork.

Author information

Authors and Affiliations

Authors

Contributions

MPB isolated the Streptomyces, extracted DNA, supervised the PCR fingerprinting reactions, performed the 16S rRNA PCR reactions, analyzed the data and wrote the manuscript. AEB extracted DNA, performed the PCR fingerprinting reactions, analyzed the data and wrote the manuscript. JPDW contributed to the isolation and DNA extraction. PL collected the soil samples and supervised the manuscript writing. SVDS supervised the experiments, data analysis and manuscript writing. All the authors have approved the final manuscript.

Corresponding author

Correspondence to Marcela Proença Borba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borba, M.P., Ballarini, A.E., Witusk, J.P.D. et al. Evaluation of BOX-PCR and REP-PCR as Molecular Typing Tools for Antarctic Streptomyces. Curr Microbiol 77, 3573–3581 (2020). https://doi.org/10.1007/s00284-020-02199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02199-6

Navigation