Skip to main content

Advertisement

Log in

Viscera-Associated Bacterial Diversity Among Intertidal Gastropods from Northern-Atlantic Coast of Portugal

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Culture-dependent evaluation of the bacteria was carried out on gastropods, such as Monodonta lineata, Gibbula umbilicalis, Nucella lapillus and Patella intermedia, and the environmental samples (biofilm and surrounding sea water) collected from six different locations of Northern Portugal coastal area to investigate the interactions between the microbes in the viscera of gastropods and in the environment. A total of 141 isolates and 39 operational taxonomic units were identified. Phylogenetic analysis based on the 16S rRNA gene showed that bacterial isolates are highly diverse and most of them were found in other marine environment. The observed bacterial diversity was distributed over five different classes (Gammaproteobacteria, Alphaproteobacteria, Flavobacteria, Bacilli and Actinobacteria) with the greatest number of 16S rRNA gene sequence derived from the Gammaproteobacteria (77 %). Vibrio is found to be the dominant one among the different bacterial species isolated. The results suggest that the microorganisms in the environment are maintained in the viscera of the gastropods which may have a key role in the metabolic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72(9):5734–5741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins–a current perspective. Biodegradation 9(5):343–357

    Article  CAS  PubMed  Google Scholar 

  3. Brinkhoff T, Giebel HA, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189(6):531–539

    Article  CAS  PubMed  Google Scholar 

  4. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    Article  CAS  PubMed  Google Scholar 

  5. Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66(4):1692–1697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Devine SP, Pelletreau KN, Rumpho ME (2012) 16S rDNA-based metagenomic analysis of bacterial diversity associated with two populations of the kleptoplastic sea slug Elysia chlorotica and its algal prey Vaucheria litorea. Biol Bull 223(1):138–154

    CAS  PubMed  Google Scholar 

  7. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  CAS  PubMed  Google Scholar 

  8. Distel DL, Morrill W, MacLaren-Toussaint N, Franks D, Waterbury J (2002) Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 52(6):2261–2269

    Article  CAS  PubMed  Google Scholar 

  9. Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5(5):e1000423

    Article  PubMed Central  PubMed  Google Scholar 

  10. Farto R, Montes M, Pérez MJ, Nieto TP, Larsen JL, Pedersen K (1999) Characterization by numerical taxonomy and ribotyping of Vibrio splendidus biovar I and Vibrio scophthalmi strains associated with turbot cultures. J Appl Microbiol 86(5):796–804

    Article  CAS  PubMed  Google Scholar 

  11. Fiore CL, Jarett JK, Olson ND, Lesser MP (2010) Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol 18(10):455–463

    Article  CAS  PubMed  Google Scholar 

  12. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6(2):121–131

    Article  CAS  PubMed  Google Scholar 

  13. Gosselin LA, Chia FS (1994) Feeding habits of newly hatched juveniles of an intertidal predatory gastropod, Nucella emarginata (Deshayes). J Exp Mar Biol Ecol 176(1):1–13

    Article  Google Scholar 

  14. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224

    Article  CAS  PubMed  Google Scholar 

  15. Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4(1):17–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Harris JM (1993) The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb Ecol 25(3):195–231

    Article  CAS  PubMed  Google Scholar 

  17. Hedrick SM (2004) The acquired immune system: a vantage from beneath. Immunity 21(5):607–615

    Article  CAS  PubMed  Google Scholar 

  18. Hernández-Martínez P, Naseri B, Navarro-Cerrillo G, Escriche B, Ferré J, Herrero S (2010) Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ Microbiol 12:2730–2737

    PubMed  Google Scholar 

  19. Hill AS, Hawkins SJ (1991) Seasonal and spatial variation of epilithic micro algal distribution and abundance and its ingestion by Patella vulgata on a moderately exposed rocky shore. J Mar Biol Assoc United Kingdom 71(2):403–423

    Article  Google Scholar 

  20. Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy ML, Schleper C, Kuypers MMM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11(9):2228–2243

    Article  CAS  PubMed  Google Scholar 

  21. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292(5519):1115–1118

    Article  CAS  PubMed  Google Scholar 

  22. Horn DJV, Garcia JR, Loker ES, Mitchell KR, Mkoji GM, Adema CM, Takacs-Vesbach CD (2012) Complex intestinal bacterial communities in three species of planorbid snails. J Molluscan Stud 78(1):74–80

    Article  Google Scholar 

  23. Jenkins SR, Arenas F, Arrontes J, Bussell J, Castro J, Coleman RA, Hawkins SJ, Kay S, Martnez B, Oliveros J, Roberts MF, Sousa S, Thompson RC, Hartnoll RG (2001) European-scale analysis of seasonal variability in limpet grazing activity and microalgal abundance. Mar Ecol Prog Ser 211:193–203

    Article  CAS  Google Scholar 

  24. Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39(2):91–100

    CAS  PubMed  Google Scholar 

  25. Kirchman DL, Dittel AI, Findlay SEG, Fischer DT (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat Microb Ecol 35:243–257

    Article  Google Scholar 

  26. Lorenzen S (2007) The limpet Patella vulgata L. at night in air: effective feeding on Ascophyllum nodosum monocultures and stranded seaweeds. J Molluscan Stud 73(3):267–274

    Article  Google Scholar 

  27. Mackie RI (2002) Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr Comp Biol 42(2):319–326

    Article  PubMed  Google Scholar 

  28. McFall-Ngai M (2007) Adaptive immunity: care for the community. Nature 445(7124):153

    Article  CAS  PubMed  Google Scholar 

  29. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed Central  PubMed  Google Scholar 

  30. Paerl HW, Dennis RL, Whitall DR (2002) Atmospheric deposition of nitrogen: implications for nutrient over-enrichment of coastal waters. Estuaries 25(4):677–693

    Article  CAS  Google Scholar 

  31. Rabalais NN, Turner RE, Díaz RJ, Justić D (2009) Global change and eutrophication of coastal waters Ices. J Mar Sci J Cons 66(7):1528–1537

    Article  Google Scholar 

  32. Rajakumar S, Ayyasamy PM, Shanthi K, Thavamani P, Velmurugan P, Song YC, Lakshmanaperumalsamy P (2008) Nitrate removal efficiency of bacterial consortium (Pseudomonas sp. KW1 and Bacillus sp. YW4) in synthetic nitrate-rich water. J Hazard Mater 157(2–3):553–563

    Article  CAS  PubMed  Google Scholar 

  33. Ritchie KB, Smith GW (1995) Preferential carbon utilization by surface bacterial communities from water mass, normal, and white band diseased Acropora cervicornis. Mol Mar Biol Biotechnol 4:345–352

    CAS  Google Scholar 

  34. Sawabe T, Oda Y, Shiomi Y, Ezura Y (1995) Alginate degradation by bacteria isolated from the gut of sea urchins and abalones. Microb Ecol 30(2):193–202

    Article  CAS  PubMed  Google Scholar 

  35. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sharon G, Rosenberg E (2008) Bacterial growth on coral mucus. Curr Microbiol 56(5):481–488

    Article  CAS  PubMed  Google Scholar 

  37. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75(23):7519–7526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Sobecky PA, Mincer TJ, Chang MC, Toukdarian A, Helinski DR (1998) Isolation of broad-host-range replicons from marine sediment bacteria. Appl Environ Microbiol 64(8):2822–2830

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577

    Article  CAS  PubMed  Google Scholar 

  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  Google Scholar 

  41. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526

    CAS  PubMed  Google Scholar 

  42. Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68(3):403–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46(4):327–338

    Article  CAS  PubMed  Google Scholar 

  44. Williams ST, Donald KM, Spencer HG, Nakano T (2010) Molecular systematics of the marine gastropod families Trochidae and Calliostomatidae (Mollusca: superfamily Trochoidea). Mol Phylogenet Evol 54(3):783–809

    Article  CAS  PubMed  Google Scholar 

  45. Yang G, Bao B, Peatman E, Li H, Huang L, Ren D (2007) Analysis of the composition of the bacterial community in puffer fish Takifugu obscurus. Aquaculture 262(2–4):183–191

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors V. Pratheepa thanks to the scholar Anoop Alex for helping in Phylogentic analysis and valuable suggestions in preparing the manuscript. The author is also grateful to Fundaçao para a Ciencia e Technologia (FCT), Portugal for a Postdoctoral Grant (SFRH/BPD/78269/2011) and the projects PesT-C/MAR/LA0015/2011 from the Portuguese Foundation for Science and Technology (FCT), INTERREG IV projects Atlantox and Pharmatlantic and MARBIOTECH-NORTE-07-0124-FEDER-000047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Vasconcelos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratheepa, V.K., Silva, M. & Vasconcelos, V. Viscera-Associated Bacterial Diversity Among Intertidal Gastropods from Northern-Atlantic Coast of Portugal. Curr Microbiol 68, 140–148 (2014). https://doi.org/10.1007/s00284-013-0450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0450-2

Keywords

Navigation