Skip to main content

Advertisement

Log in

New insights into the pathogenesis of IgA nephropathy

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

IgA nephropathy (IgAN) is the most common diagnosis amongst primary glomerular diseases in most countries where renal biopsies are regularly performed. Only a fraction of these patients is at high risk of losing glomerular filtration rate (GFR) in particular those with high grade proteinuria, uncontrolled hypertension or already impaired GFR at diagnosis, and those with renal scars in the renal biopsy. Genetic modifiers of IgAN onset and/or course are emerging. Spontaneous animal models of IgAN are problematic given considerable species differences between the rodent and human IgA system. However, new transgenic models help to better understand the pathogenesis. A key pathogenetic role appears to be played by underglycated IgA1 as well as autoantibodies to these IgA glycoforms and IgA receptors such as CD89 and transferrin receptor 1. Once IgA and/or IgA-containing immune complexes are deposited or formed in the mesangium, secondary effector mechanisms become important including complement activation, release of mesangial growth factors (in particular platelet-derived growth factor), and finally non-IgAN-specific events that culminate in glomerular and subsequently renal tubulointerstitial scaring. Here, we review these processes and describe potential novel therapeutic targets in IgAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tiebosch AT, Wolters J, Frederik PF, van der Wiel TW, Zeppenfeldt E, van Breda Vriesman PJ (1987) Epidemiology of idiopathic glomerular disease: a prospective study. Kidney Int 32:112–116

    CAS  PubMed  Google Scholar 

  2. Waldherr R, Rambausek M, Duncker WD, Ritz E (1989) Frequency of mesangial IgA deposits in a non-selected autopsy series. Nephrol Dial Transplant 4:943–946

    CAS  PubMed  Google Scholar 

  3. Suzuki K, Honda K, Tanabe K, Toma H, Nihei H, Yamaguchi Y (2003) Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int 63:2286–2294

    PubMed  Google Scholar 

  4. Szeto CC, Lai FM, To KF, Wong TY, Chow KM, Choi PC, Lui SF, Li PK (2001) The natural history of immunoglobulin a nephropathy among patients with hematuria and minimal proteinuria. Am J Med 110:434–437

    CAS  PubMed  Google Scholar 

  5. Gutierrez E, Zamora I, Ballarin JA, Arce Y, Jimenez S, Quereda C, Olea T, Martinez-Ara J, Segarra A, Bernis C, Garcia A, Goicoechea M, Garcia de Vinuesa S, Rojas-Rivera J, Praga M (2012) Long-term outcomes of IgA nephropathy presenting with minimal or no proteinuria. J Am Soc Nephrol 23:1753–1760

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Floege J (2004) Recurrent IgA nephropathy after renal transplantation. Semin Nephrol 24:287–291

    PubMed  Google Scholar 

  7. Berthoux F, Mohey H, Laurent B, Mariat C, Afiani A, Thibaudin L (2011) Predicting the risk for dialysis or death in IgA nephropathy. J Am Soc Nephrol 22:752–761

    PubMed Central  PubMed  Google Scholar 

  8. Bonnet F, Deprele C, Sassolas A, Moulin P, Alamartine E, Berthezene F, Berthoux F (2001) Excessive body weight as a new independent risk factor for clinical and pathological progression in primary IgA nephritis. Am J Kidney Dis 37:720–727

    CAS  PubMed  Google Scholar 

  9. Orth SR, Stockmann A, Conradt C, Ritz E, Ferro M, Kreusser W, Piccoli G, Rambausek M, Roccatello D, Schafer K, Sieberth HG, Wanner C, Watschinger B, Zucchelli P (1998) Smoking as a risk factor for end-stage renal failure in men with primary renal disease. Kidney Int 54:926–931

    CAS  PubMed  Google Scholar 

  10. Roberts IS, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, Bonsib S, Bruijn JA, Cattran DC, Coppo R, D’Agati V, D’Amico G, Emancipator S, Emma F, Feehally J, Ferrario F, Fervenza FC, Florquin S, Fogo A, Geddes CC, Groene HJ, Haas M, Herzenberg AM, Hill PA, Hogg RJ, Hsu SI, Jennette JC, Joh K, Julian BA, Kawamura T, Lai FM, Li LS, Li PK, Liu ZH, Mackinnon B, Mezzano S, Schena FP, Tomino Y, Walker PD, Wang H, Weening JJ, Yoshikawa N, Zhang H (2009) The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 76:546–556

    PubMed  Google Scholar 

  11. Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, Bonsib S, Bruijn JA, D’Agati V, D’Amico G, Emancipator S, Emma F, Ferrario F, Fervenza FC, Florquin S, Fogo A, Geddes CC, Groene HJ, Haas M, Herzenberg AM, Hill PA, Hogg RJ, Hsu SI, Jennette JC, Joh K, Julian BA, Kawamura T, Lai FM, Leung CB, Li LS, Li PK, Liu ZH, Mackinnon B, Mezzano S, Schena FP, Tomino Y, Walker PD, Wang H, Weening JJ, Yoshikawa N, Zhang H (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76:534–545

    PubMed  Google Scholar 

  12. Alamartine E, Sauron C, Laurent B, Sury A, Seffert A, Mariat C (2011) The use of the Oxford classification of IgA nephropathy to predict renal survival. Clin J Am Soc Nephrol 6:2384–2388

    PubMed Central  PubMed  Google Scholar 

  13. Herzenberg AM, Fogo AB, Reich HN, Troyanov S, Bavbek N, Massat AE, Hunley TE, Hladunewich MA, Julian BA, Fervenza FC, Cattran DC (2011) Validation of the Oxford classification of IgA nephropathy. Kidney Int 80:310–317

    PubMed  Google Scholar 

  14. Kang SH, Choi SR, Park HS, Lee JY, Sun IO, Hwang HS, Chung BH, Park CW, Yang CW, Kim YS, Choi YJ, Choi BS (2012) The Oxford classification as a predictor of prognosis in patients with IgA nephropathy. Nephrol Dial Transplant 27:252–258

    PubMed  Google Scholar 

  15. Katafuchi R, Ninomiya T, Nagata M, Mitsuiki K, Hirakata H (2011) Validation study of Oxford classification of IgA nephropathy: the significance of extracapillary proliferation. Clin J Am Soc Nephrol 6:2806–2813

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Lv J, Shi S, Xu D, Zhang H, Troyanov S, Cattran DC, Wang H (2013) Evaluation of the Oxford classification of IgA nephropathy: a systematic review and meta-analysis. Am J Kidney Dis 62:891–899

    PubMed  Google Scholar 

  17. Mubarak M (2012) Immunostaining findings in IgA nephropathy: correlation with histology and clinical outcome in the Oxford classification patient cohort. Nephrol Dial Transplant 27:2998–2999, author reply 2999-3000

    PubMed  Google Scholar 

  18. Troyanov S, Fervenza FC (2011) Validating the Oxford classification of IgA nephropathy. Clin J Am Soc Nephrol 6:2335–2336

    PubMed  Google Scholar 

  19. Zeng CH, Le W, Ni Z, Zhang M, Miao L, Luo P, Wang R, Lv Z, Chen J, Tian J, Chen N, Pan X, Fu P, Hu Z, Wang L, Fan Q, Zheng H, Zhang D, Wang Y, Huo Y, Lin H, Chen S, Sun S, Liu Z, Liu D, Ma L, Pan T, Zhang A, Jiang X, Xing C, Sun B, Zhou Q, Tang W, Liu F, Liu Y, Liang S, Xu F, Huang Q, Shen H, Wang J, Shyr Y, Phillips S, Troyanov S, Fogo A, Liu ZH (2012) A multicenter application and evaluation of the Oxford classification of IgA nephropathy in adult Chinese patients. Am J Kidney Dis 60:812–820

    PubMed  Google Scholar 

  20. Liu H, Peng Y, Liu Y, Yuan S, Liu F, Yang D, Chen X, He L, Fu M, Shao J, Yang L (2012) Renal biopsy findings of patients presenting with isolated hematuria: disease associations. Am J Nephrol 36:377–385

    PubMed  Google Scholar 

  21. Yu XQ, Li M, Zhang H, Low HQ, Wei X, Wang JQ, Sun LD, Sim KS, Li Y, Foo JN, Wang W, Li ZJ, Yin XY, Tang XQ, Fan L, Chen J, Li RS, Wan JX, Liu ZS, Lou TQ, Zhu L, Huang XJ, Zhang XJ, Liu ZH, Liu JJ (2012) A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet 44:178–182

    CAS  Google Scholar 

  22. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, Sanna-Cherchi S, Men CJ, Julian BA, Wyatt RJ, Novak J, He JC, Wang H, Lv J, Zhu L, Wang W, Wang Z, Yasuno K, Gunel M, Mane S, Umlauf S, Tikhonova I, Beerman I, Savoldi S, Magistroni R, Ghiggeri GM, Bodria M, Lugani F, Ravani P, Ponticelli C, Allegri L, Boscutti G, Frasca G, Amore A, Peruzzi L, Coppo R, Izzi C, Viola BF, Prati E, Salvadori M, Mignani R, Gesualdo L, Bertinetto F, Mesiano P, Amoroso A, Scolari F, Chen N, Zhang H, Lifton RP (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Monteiro RC (2007) Pathogenic role of IgA receptors in IgA nephropathy. Contrib Nephrol 157:64–69

    CAS  PubMed  Google Scholar 

  24. Rifai A, Small PA Jr, Teague PO, Ayoub EM (1979) Experimental IgA nephropathy. J Exp Med 150:1161–1173

    CAS  PubMed  Google Scholar 

  25. Monteiro RC, Halbwachs-Mecarelli L, Berger J, Lesavre P (1984) Characteristics of eluted IgA in primary IgA nephropathy. Contrib Nephrol 40:107–111

    CAS  PubMed  Google Scholar 

  26. Emancipator SN, Gallo GR, Lamm ME (1983) Experimental IgA nephropathy induced by oral immunization. J Exp Med 157:572–582

    CAS  PubMed  Google Scholar 

  27. Layward L, Allen AC, Hattersley JM, Harper SJ, Feehally J (1995) Response to mucosal antigen challenge in IgA nephropathy. Exp Nephrol 3:300–307

    CAS  PubMed  Google Scholar 

  28. Smith AC, Molyneux K, Feehally J, Barratt J (2006) O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J Am Soc Nephrol 17:3520–3528

    CAS  PubMed  Google Scholar 

  29. Imai H, Nakamoto Y, Asakura K, Miki K, Yasuda T, Miura AB (1985) Spontaneous glomerular IgA deposition in ddY mice: an animal model of IgA nephritis. Kidney Int 27:756–761

    CAS  PubMed  Google Scholar 

  30. Okazaki K, Suzuki Y, Otsuji M, Suzuki H, Kihara M, Kajiyama T, Hashimoto A, Nishimura H, Brown R, Hall S, Novak J, Izui S, Hirose S, Tomino Y (2012) Development of a model of early-onset IgA nephropathy. J Am Soc Nephrol 23:1364–1374

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gesualdo L, Ricanati S, Hassan MO, Emancipator SN, Lamm ME (1990) Enzymolysis of glomerular immune deposits in vivo with dextranase/protease ameliorates proteinuria, hematuria, and mesangial proliferation in murine experimental IgA nephropathy. J Clin Invest 86:715–722

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Lamm ME, Emancipator SN, Robinson JK, Yamashita M, Fujioka H, Qiu J, Plaut AG (2008) Microbial IgA protease removes IgA immune complexes from mouse glomeruli in vivo: potential therapy for IgA nephropathy. Am J Pathol 172:31–36

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Berger J, Yaneva H, Nabarra B, Barbanel C (1975) Recurrence of mesangial deposition of IgA after renal transplantation. Kidney Int 7:232–241

    CAS  PubMed  Google Scholar 

  34. Zheng F, Kundu GC, Zhang Z, Ward J, DeMayo F, Mukherjee AB (1999) Uteroglobin is essential in preventing immunoglobulin a nephropathy in mice. Nat Med 5:1018–1025

    CAS  PubMed  Google Scholar 

  35. Wang J, Anders RA, Wu Q, Peng D, Cho JH, Sun Y, Karaliukas R, Kang HS, Turner JR, Fu YX (2004) Dysregulated light expression on T-cells mediates intestinal inflammation and contributes to IgA nephropathy. J Clin Invest 113:826–835

    CAS  PubMed Central  PubMed  Google Scholar 

  36. McCarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, Ward L, Lawson MA, Macpherson AJ, McCoy KD, Pei Y, Novak L, Lee JY, Julian BA, Novak J, Ranger A, Gommerman JL, Browning JL (2011) Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest 121:3991–4002

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Otani M, Nakata J, Kihara M, Leroy V, Moll S, Wada Y, Izui S (2012) O-glycosylated IgA rheumatoid factor induces IgA deposits and glomerulonephritis. J Am Soc Nephrol 23:438–446

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Monteiro RC (2005) New insights in the pathogenesis of IgA nephropathy. Nefrologia 25(Suppl 2):82–86

    PubMed  Google Scholar 

  39. Kanamaru Y, Arcos-Fajardo M, Moura IC, Tsuge T, Cohen H, Essig M, Vrtovsnik F, Loirat C, Peuchmaur M, Beaudoin L, Launay P, Lehuen A, Blank U, Monteiro RC (2007) Fc alpha receptor I activation induces leukocyte recruitment and promotes aggravation of glomerulonephritis through the FcR gamma adaptor. Eur J Immunol 37:1116–1128

    CAS  PubMed  Google Scholar 

  40. Duchez S, Amin R, Cogne N, Delpy L, Sirac C, Pascal V, Corthesy B, Cogne M (2010) Premature replacement of mu with alpha immunoglobulin chains impairs lymphopoiesis and mucosal homing but promotes plasma cell maturation. Proc Natl Acad Sci U S A 107:3064–3069

    PubMed Central  PubMed  Google Scholar 

  41. Coulon S, Dussiot M, Grapton D, Maciel TT, Wang PH, Callens C, Tiwari MK, Agarwal S, Fricot A, Vandekerckhove J, Tamouza H, Zermati Y, Ribeil JA, Djedaini K, Oruc Z, Pascal V, Courtois G, Arnulf B, Alyanakian MA, Mayeux P, Leanderson T, Benhamou M, Cogne M, Monteiro RC, Hermine O, Moura IC (2011) Polymeric IgA1 controls erythroblast proliferation and accelerates erythropoiesis recovery in anemia. Nat Med 17:1456–1465

    CAS  PubMed  Google Scholar 

  42. Berthelot L, Papista C, Maciel TT, Biarnes-Pelicot M, Tissandie E, Wang PH, Tamouza H, Jamin A, Bex-Coudrat J, Gestin A, Boumediene A, Arcos-Fajardo M, England P, Pillebout E, Walker F, Daugas E, Vrtosvnik F, Flamant M, Benhamou M, Cogne M, Moura IC, Monteiro RC (2012) Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J Exp Med 209:793–806

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Gharavi AG, Yan Y, Scolari F, Schena FP, Frasca GM, Ghiggeri GM, Cooper K, Amoroso A, Viola BF, Battini G, Caridi G, Canova C, Farhi A, Subramanian V, Nelson-Williams C, Woodford S, Julian BA, Wyatt RJ, Lifton RP (2000) IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat Genet 26:354–357

    CAS  PubMed  Google Scholar 

  44. Suzuki H, Suzuki Y, Yamanaka T, Hirose S, Nishimura H, Toei J, Horikoshi S, Tomino Y (2005) Genome-wide scan in a novel IgA nephropathy model identifies a susceptibility locus on murine chromosome 10, in a region syntenic to human igan1 on chromosome 6q22-23. J Am Soc Nephrol 16:1289–1299

    CAS  PubMed  Google Scholar 

  45. Liu XQ, Paterson AD, He N, St George-Hyslop P, Rauta V, Gronhagen-Riska C, Laakso M, Thibaudin L, Berthoux F, Cattran D, Pei Y (2008) Il5ra and tnfrsf6b gene variants are associated with sporadic IgA nephropathy. J Am Soc Nephrol 19:1025–1033

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, Snyder HJ, Choi M, Hou P, Scolari F, Izzi C, Gigante M, Gesualdo L, Savoldi S, Amoroso A, Cusi D, Zamboli P, Julian BA, Novak J, Wyatt RJ, Mucha K, Perola M, Kristiansson K, Viktorin A, Magnusson PK, Thorleifsson G, Thorsteinsdottir U, Stefansson K, Boland A, Metzger M, Thibaudin L, Wanner C, Jager KJ, Goto S, Maixnerova D, Karnib HH, Nagy J, Panzer U, Xie J, Chen N, Tesar V, Narita I, Berthoux F, Floege J, Stengel B, Zhang H, Lifton RP, Gharavi AG (2012) Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet 8:e1002765

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Bertinetto FE, Calafell F, Roggero S, Chidichimo R, Garino E, Marcuccio C, Coppo R, Scolari F, Frasca GM, Savoldi S, Schena FP, Amoroso A (2012) Search for genetic association between IgA nephropathy and candidate genes selected by function or by gene mapping at loci IGAN2 and IGAN3. Nephrol Dial Transplant 27:2328–2337

    CAS  PubMed  Google Scholar 

  48. Gharavi AG, Moldoveanu Z, Wyatt RJ, Barker CV, Woodford SY, Lifton RP, Mestecky J, Novak J, Julian BA (2008) Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19:1008–1014

    PubMed Central  PubMed  Google Scholar 

  49. Johnson RJ, Hurtado A, Merszei J, Rodriguez-Iturbe B, Feng L (2003) Hypothesis: dysregulation of immunologic balance resulting from hygiene and socioeconomic factors may influence the epidemiology and cause of glomerulonephritis worldwide. Am J Kidney Dis 42:575–581

    PubMed  Google Scholar 

  50. Tissandie E, Morelle W, Berthelot L, Vrtovsnik F, Daugas E, Walker F, Lebrec D, Trawale JM, Francoz C, Durand F, Moura IC, Paradis V, Moreau R, Monteiro RC (2011) Both IgA nephropathy and alcoholic cirrhosis feature abnormally glycosylated IgA1 and soluble CD89-IgA and IgG-IgA complexes: common mechanisms for distinct diseases. Kidney Int 80:1352–1363

    CAS  PubMed  Google Scholar 

  51. Coppo R, Camilla R, Amore A, Peruzzi L, Dapra V, Loiacono E, Vatrano S, Rollino C, Sepe V, Rampino T, Dal Canton A (2010) Toll-like receptor 4 expression is increased in circulating mononuclear cells of patients with immunoglobulin a nephropathy. Clin Exp Immunol 159:73–81

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Trascasa ML, Egido J, Sancho J, Hernando L (1980) IgA glomerulonephritis (Berger’s disease): evidence of high serum levels of polymeric IgA. Clin Exp Immunol 42:247–254

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Monteiro RC, Halbwachs-Mecarelli L, Roque-Barreira MC, Noel LH, Berger J, Lesavre P (1985) Charge and size of mesangial IgA in IgA nephropathy. Kidney Int 28:666–671

    CAS  PubMed  Google Scholar 

  54. Andre PM, Le Pogamp P, Chevet D (1990) Impairment of jacalin binding to serum IgA in IgA nephropathy. J Clin Lab Anal 4:115–119

    CAS  PubMed  Google Scholar 

  55. Hiki Y, Iwase H, Kokubo T, Horii A, Tanaka A, Nishikido J, Hotta K, Kobayashi Y (1996) Association of asialo-galactosyl beta 1-3n-acetylgalactosamine on the hinge with a conformational instability of jacalin-reactive immunoglobulin a1 in immunoglobulin a nephropathy. J Am Soc Nephrol 7:955–960

    CAS  PubMed  Google Scholar 

  56. Hiki Y, Iwase H, Saitoh M, Saitoh Y, Horii A, Hotta K, Kobayashi Y (1996) Reactivity of glomerular and serum IgA1 to jacalin in IgA nephropathy. Nephron 72:429–435

    CAS  PubMed  Google Scholar 

  57. Woof JM, Russell MW (2011) Structure and function relationships in IgA. Mucosal Immunol 4:590–597

    CAS  PubMed  Google Scholar 

  58. Novak J, Renfrow MB, Gharavi AG, Julian BA (2013) Pathogenesis of immunoglobulin A nephropathy. Curr Opin Nephrol Hypertens. doi:10.1097/MNH.0b013e32835fef54

  59. Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J (1999) Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest 104:73–81

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Allen AC, Bailey EM, Barratt J, Buck KS, Feehally J (1999) Analysis of IgA1 o-glycans in IgA nephropathy by fluorophore-assisted carbohydrate electrophoresis. J Am Soc Nephrol 10:1763–1771

    CAS  PubMed  Google Scholar 

  61. Hiki Y, Odani H, Takahashi M, Yasuda Y, Nishimoto A, Iwase H, Shinzato T, Kobayashi Y, Maeda K (2001) Mass spectrometry proves under-o-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int 59:1077–1085

    CAS  PubMed  Google Scholar 

  62. Coppo R, Amore A (2004) Aberrant glycosylation in IgA nephropathy (IgAN). Kidney Int 65:1544–1547

    CAS  PubMed  Google Scholar 

  63. Xu LX, Zhao MH (2005) Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int 68:167–172

    CAS  PubMed  Google Scholar 

  64. Moldoveanu Z, Wyatt RJ, Lee JY, Tomana M, Julian BA, Mestecky J, Huang WQ, Anreddy SR, Hall S, Hastings MC, Lau KK, Cook WJ, Novak J (2007) Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71:1148–1154

    CAS  PubMed  Google Scholar 

  65. Renfrow MB, Cooper HJ, Tomana M, Kulhavy R, Hiki Y, Toma K, Emmett MR, Mestecky J, Marshall AG, Novak J (2005) Determination of aberrant o-glycosylation in the IgA1 hinge region by electron capture dissociation Fourier transform-ion cyclotron resonance mass spectrometry. J Biol Chem 280:19136–19145

    CAS  PubMed  Google Scholar 

  66. Franc V, Rehulka P, Raus M, Stulik J, Novak J, Renfrow MB, Sebela M (2013) Elucidating heterogeneity of IgA1 hinge-region o-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J Proteomics 92:299–312

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L, Julian BA, Tomana M, Wyatt RJ, Edberg JC, Alarcon GS, Kimberly RP, Tomino Y, Mestecky J, Novak J (2008) IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 118:629–639

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Allen AC, Bailey EM, Brenchley PE, Buck KS, Barratt J, Feehally J (2001) Mesangial IgA1 in IgA nephropathy exhibits aberrant o-glycosylation: observations in three patients. Kidney Int 60:969–973

    CAS  PubMed  Google Scholar 

  69. Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, Gharavi AG, Novak J, Zhang H (2012) The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int 82:790–796

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Berthoux F, Suzuki H, Thibaudin L, Yanagawa H, Maillard N, Mariat C, Tomino Y, Julian BA, Novak J (2012) Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 23:1579–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Suzuki H, Fan R, Zhang Z, Brown R, Hall S, Julian BA, Chatham WW, Suzuki Y, Wyatt RJ, Moldoveanu Z, Lee JY, Robinson J, Tomana M, Tomino Y, Mestecky J, Novak J (2009) Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J Clin Invest 119:1668–1677

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Tamouza H, Chemouny JM, Raskova Kafkova L, Berthelot L, Flamant M, Demion M, Mesnard L, Paubelle E, Walker F, Julian BA, Tissandie E, Tiwari MK, Camara NO, Vrtovsnik F, Benhamou M, Novak J, Monteiro RC, Moura IC (2012) The IgA1 immune complex-mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney Int 82:1284–1296

    CAS  PubMed  Google Scholar 

  73. Novak J, Tomana M, Matousovic K, Brown R, Hall S, Novak L, Julian BA, Wyatt RJ, Mestecky J (2005) IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int 67:504–513

    CAS  PubMed  Google Scholar 

  74. Monteiro RC, Moura IC, Launay P, Tsuge T, Haddad E, Benhamou M, Cooper MD, Arcos-Fajardo M (2002) Pathogenic significance of IgA receptor interactions in IgA nephropathy. Trends Mol Med 8:464–468

    CAS  PubMed  Google Scholar 

  75. Monteiro RC, Van De Winkel JG (2003) IgA Fc receptors. Annu Rev Immunol 21:177–204

    CAS  PubMed  Google Scholar 

  76. Baumann J, Park CG, Mantis NJ (2010) Recognition of secretory IgA by dc-sign: implications for immune surveillance in the intestine. Immunol Lett 131:59–66

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Diana J, Moura IC, Vaugier C, Gestin A, Tissandie E, Beaudoin L, Corthesy B, Hocini H, Lehuen A, Monteiro RC (2013) Secretory IgA induces tolerogenic dendritic cells through SIGNR1 dampening autoimmunity in mice. J Immunol 191:2335–2343

    CAS  PubMed  Google Scholar 

  78. Mestecky J, Russell MW (1986) IgA subclasses. Monogr Allergy 19:277–301

    CAS  PubMed  Google Scholar 

  79. Herr AB, Ballister ER, Bjorkman PJ (2003) Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. Nature 423:614–620

    CAS  PubMed  Google Scholar 

  80. Smith PD, Smythies LE, Mosteller-Barnum M, Sibley DA, Russell MW, Merger M, Sellers MT, Orenstein JM, Shimada T, Graham MF, Kubagawa H (2001) Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol 167:2651–2656

    CAS  PubMed  Google Scholar 

  81. Schlondorff D, Banas B (2009) The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 20:1179–1187

    CAS  PubMed  Google Scholar 

  82. Leung JC, Tsang AW, Chan DT, Lai KN (2000) Absence of CD89, polymeric immunoglobulin receptor, and asialoglycoprotein receptor on human mesangial cells. J Am Soc Nephrol 11:241–249

    CAS  PubMed  Google Scholar 

  83. McDonald KJ, Cameron AJ, Allen JM, Jardine AG (2002) Expression of Fc alpha/mu receptor by human mesangial cells: a candidate receptor for immune complex deposition in IgA nephropathy. Biochem Biophys Res Commun 290:438–442

    CAS  PubMed  Google Scholar 

  84. Moura IC, Benhamou M, Launay P, Vrtovsnik F, Blank U, Monteiro RC (2008) The glomerular response to IgA deposition in IgA nephropathy. Semin Nephrol 28:88–95

    CAS  PubMed  Google Scholar 

  85. Moura IC, Centelles MN, Arcos-Fajardo M, Malheiros DM, Collawn JF, Cooper MD, Monteiro RC (2001) Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J Exp Med 194:417–425

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Moura IC, Arcos-Fajardo M, Sadaka C, Leroy V, Benhamou M, Novak J, Vrtovsnik F, Haddad E, Chintalacharuvu KR, Monteiro RC (2004) Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol 15:622–634

    CAS  PubMed  Google Scholar 

  87. Haddad E, Moura IC, Arcos-Fajardo M, Macher MA, Baudouin V, Alberti C, Loirat C, Monteiro RC, Peuchmaur M (2003) Enhanced expression of the CD71 mesangial iga1 receptor in Berger disease and Henoch-Schönlein nephritis: association between CD71 expression and IgA deposits. J Am Soc Nephrol 14:327–337

    CAS  PubMed  Google Scholar 

  88. Monteiro RC (2010) The role of IgA and IgA Fc receptors as anti-inflammatory agents. J Clin Immunol 30(Suppl 1):S61–S64

    CAS  PubMed  Google Scholar 

  89. Monteiro RC (2010) Role of IgA and IgA Fc receptors in inflammation. J Clin Immunol 30:1–9

    CAS  PubMed  Google Scholar 

  90. Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P (2006) Structure of C3b reveals conformational changes that underlie complement activity. Nature 444:213–216

    CAS  PubMed  Google Scholar 

  91. Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE (2007) Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol 179:2600–2608

    CAS  PubMed  Google Scholar 

  92. Brekke OL, Christiansen D, Fure H, Fung M, Mollnes TE (2007) The role of complement C3 opsonization, C5a receptor, and CD14 in e. Coli-induced up-regulation of granulocyte and monocyte CD11b/CD18 (cr3), phagocytosis, and oxidative burst in human whole blood. J Leukoc Biol 81:1404–1413

    CAS  PubMed  Google Scholar 

  93. Berger J, Hinglais N (1968) [Intercapillary deposits of IgA-IgG]. J Urol Nephrol (Paris) 74:694–695

    CAS  Google Scholar 

  94. Rauterberg EW, Lieberknecht HM, Wingen AM, Ritz E (1987) Complement membrane attack (mac) in idiopathic IgA-glomerulonephritis. Kidney Int 31:820–829

    CAS  PubMed  Google Scholar 

  95. Hiemstra PS, Gorter A, Stuurman ME, Van Es LA, Daha MR (1987) Activation of the alternative pathway of complement by human serum IgA. Eur J Immunol 17:321–326

    CAS  PubMed  Google Scholar 

  96. Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167:2861–2868

    CAS  PubMed  Google Scholar 

  97. Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, Stahl GL, Matsushita M, Fujita T, van Kooten C, Daha MR (2006) Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 17:1724–1734

    CAS  PubMed  Google Scholar 

  98. Oortwijn BD, Eijgenraam JW, Rastaldi MP, Roos A, Daha MR, van Kooten C (2008) The role of secretory IgA and complement in IgA nephropathy. Semin Nephrol 28:58–65

    CAS  PubMed  Google Scholar 

  99. Floege J, Eitner F, Alpers CE (2008) A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol 19:12–23

    CAS  PubMed  Google Scholar 

  100. Lemley KV, Lafayette RA, Safai M, Derby G, Blouch K, Squarer A, Myers BD (2002) Podocytopenia and disease severity in IgA nephropathy. Kidney Int 61:1475–1485

    PubMed  Google Scholar 

  101. El Karoui K, Hill GS, Karras A, Moulonguet L, Caudwell V, Loupy A, Bruneval P, Jacquot C, Nochy D (2011) Focal segmental glomerulosclerosis plays a major role in the progression of IgA nephropathy. II. Light microscopic and clinical studies. Kidney Int 79:643–654

    PubMed  Google Scholar 

  102. Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, Tam KY, Xiao J, Lai FM, Tang SC (2009) Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol Dial Transplant 24:62–72

    CAS  PubMed  Google Scholar 

  103. Coppo R, Fonsato V, Balegno S, Ricotti E, Loiacono E, Camilla R, Peruzzi L, Amore A, Bussolati B, Camussi G (2010) Aberrantly glycosylated IgA1 induces mesangial cells to produce platelet-activating factor that mediates nephrin loss in cultured podocytes. Kidney Int 77:417–427

    CAS  PubMed  Google Scholar 

  104. Chan LY, Leung JC, Tang SC, Choy CB, Lai KN (2005) Tubular expression of angiotensin II receptors and their regulation in IgA nephropathy. J Am Soc Nephrol 16:2306–2317

    CAS  PubMed  Google Scholar 

  105. Chan LY, Leung JC, Tsang AW, Tang SC, Lai KN (2005) Activation of tubular epithelial cells by mesangial-derived TNF-alpha: glomerulotubular communication in IgA nephropathy. Kidney Int 67:602–612

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft SFB TRR57 P25 to JF, Agence nationale pour la recherche (ANR JCJC 2010), Fundaçao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) (INSERM/FAPESP grant), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) (CNPq/INSERM grant), and USP/COFECUB to ICM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Floege.

Additional information

This article is a contribution to the special issue on Immunopathology of Glomerular Diseases - Guest Editors: P. Ronco and J. Floege

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floege, J., Moura, I.C. & Daha, M.R. New insights into the pathogenesis of IgA nephropathy. Semin Immunopathol 36, 431–442 (2014). https://doi.org/10.1007/s00281-013-0411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-013-0411-7

Keywords

Navigation