Skip to main content

Advertisement

Log in

Role of transglutaminase 2 in celiac disease pathogenesis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

A number of lines of evidence suggest that transglutaminase 2 (TG2) may be one of the earliest disease-relevant proteins to encounter immunotoxic gluten in the celiac gut. These and other investigations also suggest that the reaction catalyzed by TG2 on dietary gluten peptides is essential for the pathogenesis of celiac disease. If so, several questions are of critical significance. How is TG2 activated in the celiac gut? What are the disease-specific and general consequences of activating TG2? Can local inhibition of TG2 in the celiac intestine suppress gluten induced pathogenesis in a dose-responsive manner? And what are the long-term consequences of suppressing TG2 activity in the small intestinal mucosa? Answers to these questions will depend upon the development of judicious models and chemical tools. They also have the potential of yielding powerful next-generation drug candidates for treating this widespread but overlooked chronic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368(Pt 2):377–396

    PubMed  CAS  Google Scholar 

  2. Sollid LM (2002) Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2(9):647–655

    PubMed  CAS  Google Scholar 

  3. Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264(5165):1593–1596

    PubMed  CAS  Google Scholar 

  4. Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373(Pt 3):793–803

    PubMed  CAS  Google Scholar 

  5. Mishra S, Murphy LJ (2004) Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase. J Biol Chem 279(23):23863–23868

    PubMed  CAS  Google Scholar 

  6. Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27(10):534–539

    PubMed  CAS  Google Scholar 

  7. Park D, Choi SS, Ha K-S (2010) Transglutaminase 2: a multi-functional protein in multiple subcellular compartments. Amino Acids 39(3):619–631

    PubMed  CAS  Google Scholar 

  8. Rodolfo C, Mormone E, Matarrese P, Ciccosanti F, Farrace MG, Garofano E, Piredda L, Fimia GM, Malorni W, Piacentini M (2004) Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem 279(52):54783–54792

    PubMed  CAS  Google Scholar 

  9. Malorni W, Farrace MG, Matarrese P et al (2009) The adenine nucleotide translocator 1 acts as a type 2 transglutaminase substrate: implications for mitochondrial-dependent apoptosis. Cell Death Differ 16(11):1480–1492

    PubMed  CAS  Google Scholar 

  10. Lesort M, Attanavanich K, Zhang J, Johnson GVW (1998) Distinct nuclear localization and activity of tissue transglutaminase. J Biol Chem 273(20):11991–11994

    PubMed  CAS  Google Scholar 

  11. Peng X, Zhang Y, Zhang H, Graner S, Williams JF, Levitt ML, Lokshin A (1999) Interaction of tissue transglutaminase with nuclear transport protein importin-alpha3. FEBS Lett 446(1):35–39

    PubMed  CAS  Google Scholar 

  12. Zemskov EA, Mikhailenko I, Hsia R-C, Zaritskaya L, Belkin AM (2011) Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS One 6(4):e19414

    PubMed  CAS  Google Scholar 

  13. Wang Z, Collighan RJ, Pytel K, Rathbone DL, Li X, Griffin M (2012) Characterization of the heparin binding site of tissue transglutaminase: its importance in the enzyme’s cell surface targeting, matrix deposition and cell signalling. J Biol Chem. doi:10.1074/jbc.M111.294819

  14. Singh US, Pan J (2005) Transglutaminase and cell-survival signaling. Prog Exp Tumor Res 38:75–88

    PubMed  CAS  Google Scholar 

  15. Verderio EAM, Johnson TS, Griffin M (2005) Transglutaminases in wound healing and inflammation. Prog Exp Tumor Res 38:89–114

    PubMed  CAS  Google Scholar 

  16. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Biol 4(2):140–156

    CAS  Google Scholar 

  17. Ientile R, Caccamo D, Griffin M (2007) Tissue transglutaminase and the stress response. Amino Acids 33(2):385–394

    PubMed  CAS  Google Scholar 

  18. Collighan RJ, Griffin M (2009) Transglutaminase 2 cross-linking of matrix proteins: biological significance and medical applications. Amino Acids 36(4):659–670

    PubMed  CAS  Google Scholar 

  19. Belkin AM (2011) Extracellular TG2: emerging functions and regulation. FEBS J 278(24):4704–4716

    PubMed  CAS  Google Scholar 

  20. Fésüs L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579(15):3297–3302

    PubMed  Google Scholar 

  21. Gaudry CA, Verderio E, Aeschlimann D, Cox A, Smith C, Griffin M (1999) Cell surface localization of tissue transglutaminase is dependent on a fibronectin-binding site in its N-terminal beta-sandwich domain. J Biol Chem 274(43):30707–30714

    PubMed  CAS  Google Scholar 

  22. Gaudry CA, Verderio E, Jones RA, Smith C, Griffin M (1999) Tissue transglutaminase is an important player at the surface of human endothelial cells: evidence for its externalization and its colocalization with the beta(1) integrin. Exp Cell Res 252(1):104–113

    PubMed  CAS  Google Scholar 

  23. Zemskov E, Janiak A, Hang J, Waghray A (2006) The role of tissue transglutaminase in cell-matrix interactions. Front Biosci 1:1057–1076

    Google Scholar 

  24. Telci D, Griffin M (2006) Tissue transglutaminase (TG2)—a wound response enzyme. Front Biosci 11(4):867–882

    PubMed  CAS  Google Scholar 

  25. Haroon ZA, Hettasch JM, Lai TS, Dewhirst MW, Greenberg CS (1999) Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J 13(13):1787–1795

    PubMed  CAS  Google Scholar 

  26. Nunes I, Gleizes PE, Metz CN, Rifkin DB (1997) Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol 136(5):1151–1163

    PubMed  CAS  Google Scholar 

  27. Mehta K, Fok JY, Mangala LS (2006) Tissue transglutaminase: from biological glue to cell survival cues. Front Biosci 11(3):173–185

    PubMed  Google Scholar 

  28. Gundemir S, Colak G, Tucholski J, Johnson GVW (2011) Transglutaminase 2: a molecular Swiss army knife. Biochim Biophys Acta 1823(2):406–419

    PubMed  Google Scholar 

  29. De Laurenzi V, Melino G (2001) Gene disruption of tissue transglutaminase. Mol Cell Biol 21(1):148

    PubMed  Google Scholar 

  30. Nanda N, Iismaa SE, Owens WA, Husain A, Mackay F, Graham RM (2001) Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem 276(23):20673–20678

    PubMed  CAS  Google Scholar 

  31. Sarang Z, Tóth B, Balajthy Z, Köröskényi K, Garabuczi E, Fésüs L, Szondy Z (2009) Some lessons from the tissue transglutaminase knockout mouse. Amino Acids 36(4):625–631

    PubMed  CAS  Google Scholar 

  32. Siegel M, Strnad P, Watts RE, Choi K, Jabri B, Omary MB, Khosla C (2008) Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One 3(3):e1861

    PubMed  Google Scholar 

  33. Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM (2010) Redox regulation of transglutaminase 2 activity. J Biol Chem 285(33):25402–25409

    PubMed  CAS  Google Scholar 

  34. Jin X, Stamnaes J, Kloeck C, Diraimondo TR, Sollid LM, Khosla C (2011) Activation of extracellular transglutaminase 2 by thioredoxin. J Biol Chem 286(43):37866–37873

    PubMed  CAS  Google Scholar 

  35. DiRaimondo TR, Klöck C, Khosla C (2012) Interferon-γ Activates transglutaminase 2 via a phosphatidylinositol-3-kinase dependent pathway: implications for celiac sprue therapy. J Pharmacol Exp Ther 341(1):104–114

    Google Scholar 

  36. Bergamini CM (1988) GTP modulates calcium binding and cation-induced conformational changes in erythrocyte transglutaminase. FEBS Lett 239(2):255–258

    PubMed  CAS  Google Scholar 

  37. Begg GE, Holman SR, Stokes PH, Matthews JM, Graham RM, Iismaa SE (2006) Mutation of a critical arginine in the GTP-binding site of transglutaminase 2 disinhibits intracellular cross-linking activity. J Biol Chem 281(18):12603–12609

    PubMed  CAS  Google Scholar 

  38. Bergamini CM, Signorini M, Poltronieri L (1987) Inhibition of erythrocyte transglutaminase by GTP. Biochim Biophys Acta 916(1):149–151

    PubMed  CAS  Google Scholar 

  39. Bergamini CM, Dondi A, Lanzara V et al (2010) Thermodynamics of binding of regulatory ligands to tissue transglutaminase. Amino acids 39(1):297–304

    PubMed  CAS  Google Scholar 

  40. Pinkas DM, Strop P, Brunger AT, Khosla C (2007) Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 5(12):2788–2796

    CAS  Google Scholar 

  41. Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99(5):2743–2747

    PubMed  CAS  Google Scholar 

  42. Antonyak MA, Jansen JM, Miller AM, Ly TK, Endo M, Cerione RA (2006) Two isoforms of tissue transglutaminase mediate opposing cellular fates. Proc Natl Acad Sci USA 103(49):18609–18614

    PubMed  CAS  Google Scholar 

  43. Lai T-S, Liu Y, Li W, Greenberg CS (2007) Identification of two GTP-independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells. FASEB J 21(14):4131–4143

    PubMed  CAS  Google Scholar 

  44. Citron BA, Suo Z, SantaCruz K, Davies PJA, Qin F, Festoff BW (2002) Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration. Neurochem Int 40(1):69–78

    PubMed  CAS  Google Scholar 

  45. Kojima S, Kuo T-F, Tatsukawa H (2012) Regulation of transglutaminase-mediated hepatic cell death in alcoholic steatohepatitis and non-alcoholic steatohepatitis. J Gastroenterol Hepatol 27(Suppl 2):52–57

    PubMed  CAS  Google Scholar 

  46. Monsonego A, Friedmann I, Shani Y, Eisenstein M, Schwartz M (1998) GTP-dependent conformational changes associated with the functional switch between Galpha and cross-linking activities in brain-derived tissue transglutaminase. J Mol Biol 282(4):713–720

    PubMed  CAS  Google Scholar 

  47. Monsonego A, Shani Y, Friedmann I, Paas Y, Eizenberg O, Schwartz M (1997) Expression of GTP-dependent and GTP-independent tissue-type transglutaminase in cytokine-treated rat brain astrocytes. J Biol Chem 272(6):3724–3732

    PubMed  CAS  Google Scholar 

  48. Sjöström H, Lundin KE, Molberg O et al (1998) Identification of a gliadin T-cell epitope in coeliac disease: general importance of gliadin deamidation for intestinal T-cell recognition. Scand J Immunol 48(2):111–115

    PubMed  Google Scholar 

  49. Fleckenstein B, Molberg Ø, Qiao S-W, Schmid DG, von der Mülbe F, Elgstøen K, Jung G, Sollid LM (2002) Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J Biol Chem 277(37):34109–34116

    PubMed  CAS  Google Scholar 

  50. Vader LW, de Ru A, van der Wal Y, Kooy YMC, Benckhuijsen W, Mearin ML, Drijfhout JW, van Veelen P, Koning F (2002) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 195(5):643–649

    PubMed  CAS  Google Scholar 

  51. Piper JL, Gray GM, Khosla C (2002) High selectivity of human tissue transglutaminase for immunoactive gliadin peptides: implications for celiac sprue. Biochemistry 41(1):386–393

    PubMed  CAS  Google Scholar 

  52. Molberg O, Mcadam SN, Körner R et al (1998) Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 4(6):713–717

    PubMed  CAS  Google Scholar 

  53. van de Wal Y, Kooy Y, van Veelen P, Peña S, Mearin L, Papadopoulos G, Koning F (1998) Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol 161(4):1585–1588

    PubMed  Google Scholar 

  54. Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AVS (2000) In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 6(3):337–342

    PubMed  CAS  Google Scholar 

  55. Arentz-Hansen H, Körner R, Molberg O et al (2000) The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 191(4):603–612

    PubMed  CAS  Google Scholar 

  56. Kim C-Y, Quarsten H, Bergseng E, Khosla C, Sollid LM (2004) Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci USA 101(12):4175–4179

    PubMed  CAS  Google Scholar 

  57. Henderson KN, Tye-Din JA, Reid HH et al (2007) A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 27(1):23–34

    PubMed  CAS  Google Scholar 

  58. Dieterich W, Laag E, Schöpper H, Volta U, Ferguson A, Gillett H, Riecken EO, Schuppan D (1998) Autoantibodies to tissue transglutaminase as predictors of celiac disease. Gastroenterol 115(6):1317–1321

    CAS  Google Scholar 

  59. Sulkanen S, Halttunen T, Laurila K, Kolho KL, Korponay-Szabó IR, Sarnesto A, Savilahti E, Collin P, Mäki M (1998) Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterol 115(6):1322–1328

    CAS  Google Scholar 

  60. Caja S, Mäki M, Kaukinen K, Lindfors K (2011) Antibodies in celiac disease: implications beyond diagnostics. Cell Mol Immunol 8(2):103–109

    PubMed  CAS  Google Scholar 

  61. Mäki M (1995) The humoral immune system in coeliac disease. Baillieres Clin Gastroenterol 9(2):231–249

    PubMed  Google Scholar 

  62. Rantala I, Mäki M, Laasonen A, Visakorpi JK (1985) Periodate–lysine–paraformaldehyde as fixative for the study of duodenal mucosa. Morphologic and immunohistochemical results at light and electron microscopic levels. Acta Pathol Microbiol Immunol Scand A 93(4):165–173

    PubMed  CAS  Google Scholar 

  63. Korponay-Szabó IR, Halttunen T, Szalai Z, Laurila K, Király R, Kovács JB, Fésüs L, Mäki M (2004) In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut 53(5):641–648

    PubMed  Google Scholar 

  64. Halttunen T, Mäki M (1999) Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterol 116(3):566–572

    CAS  Google Scholar 

  65. Barone MV, Caputo I, Ribecco MT, Maglio M, Marzari R, Sblattero D, Troncone R, Auricchio S, Esposito C (2007) Humoral immune response to tissue transglutaminase is related to epithelial cell proliferation in celiac disease. Gastroenterol 132(4):1245–1253

    CAS  Google Scholar 

  66. Zanoni G, Navone R, Lunardi C et al (2006) In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med 3(9):e358

    PubMed  Google Scholar 

  67. Matysiak-Budnik T, Moura IC, Arcos-Fajardo M et al (2008) Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 205(1):143–154

    PubMed  CAS  Google Scholar 

  68. Simon-Vecsei Z, Király R, Bagossi P et al (2012) A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci USA 109(2):431–436

    PubMed  CAS  Google Scholar 

  69. De Re V, Simula MP, Notarpietro A, Canzonieri V, Cannizzaro R, Toffoli G (2010) Do gliadin and tissue transglutaminase mediate PPAR downregulation in intestinal cells of patients with coeliac disease? Gut 59(12):1730–1731

    PubMed  Google Scholar 

  70. Luciani A, Villella VR, Vasaturo A et al (2010) Lysosomal accumulation of gliadin p31-43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARgamma downregulation in intestinal epithelial cells and coeliac mucosa. Gut 59(3):311–319

    PubMed  Google Scholar 

  71. Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2(10):748–759

    PubMed  CAS  Google Scholar 

  72. Rizzo G, Fiorucci S (2006) PPARs and other nuclear receptors in inflammation. Curr Opin Pharmacol 6(4):421–427

    PubMed  CAS  Google Scholar 

  73. Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C, Danni O, Thiemermann C, Fantozzi R (2006) Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 530(1–2):70–80

    PubMed  CAS  Google Scholar 

  74. Bethune MT, Siegel M, Howles-Banerji S, Khosla C (2009) Interferon-gamma released by gluten-stimulated celiac disease-specific intestinal T cells enhances the transepithelial flux of gluten peptides. J Pharmacol Exp Ther 329(2):657–668

    PubMed  CAS  Google Scholar 

  75. Ootani A, Li X, Sangiorgi E et al (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15(6):701–706

    PubMed  CAS  Google Scholar 

  76. Snippert HJ, van der Flier LG, Sato T et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144

    PubMed  CAS  Google Scholar 

  77. Black KE, Murray JA, David CS (2002) HLA-DQ determines the response to exogenous wheat proteins: a model of gluten sensitivity in transgenic knockout mice. J Immunol 169(10):5595–5600

    PubMed  CAS  Google Scholar 

  78. Chen Z, Dudek N, Wijburg O, Strugnell R, Brown L, Deliyannis G, Jackson D, Koentgen F, Gordon T, McCluskey J (2002) A 320-kilobase artificial chromosome encoding the human HLA DR3-DQ2 MHC haplotype confers HLA restriction in transgenic mice. J Immunol 168(6):3050–3056

    PubMed  CAS  Google Scholar 

  79. Hovhannisyan Z, Weiss A, Martin A et al (2008) The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 456(7221):534–538

    PubMed  CAS  Google Scholar 

  80. de Kauwe AL, Chen Z, Anderson RP, Keech CL, Price JD, Wijburg O, Jackson DC, Ladhams J, Allison J, McCluskey J (2009) Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J Immunol 182(12):7440–7450

    PubMed  Google Scholar 

  81. Ohta N, Hiroi T, Kweon M-N, Kinoshita N, Jang MH, Mashimo T, Miyazaki J-I, Kiyono H (2002) IL-15-dependent activation-induced cell death-resistant Th1 type CD8 alpha beta + NK1.1+ T cells for the development of small intestinal inflammation. J Immunol 169(1):460–468

    PubMed  CAS  Google Scholar 

  82. DePaolo RW, Abadie V, Tang F et al (2011) Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471(7337):220–224

    PubMed  CAS  Google Scholar 

  83. Yokoyama S, Watanabe N, Sato N, Perera P-Y, Filkoski L, Tanaka T, Miyasaka M, Waldmann TA, Hiroi T, Perera LP (2009) Antibody-mediated blockade of IL-15 reverses the autoimmune intestinal damage in transgenic mice that overexpress IL-15 in enterocytes. Proc Natl Acad Sci USA 106(37):15849–15854

    PubMed  CAS  Google Scholar 

  84. Sollid LM, Khosla C (2005) Future therapeutic options for celiac disease. Nat Clin Pract Gastroenterol Hepatol 2(3):140–147

    PubMed  CAS  Google Scholar 

  85. Siegel M, Khosla C (2007) Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 115(2):232–245

    PubMed  CAS  Google Scholar 

  86. Marrano C, de Macédo P, Keillor JW (2001) Evaluation of novel dipeptide-bound alpha, beta-unsaturated amides and epoxides as irreversible inhibitors of guinea pig liver transglutaminase. Bioorg Med Chem 9(7):1923–1928

    PubMed  CAS  Google Scholar 

  87. Wodzinska JM (2005) Transglutaminases as targets for pharmacological inhibition. Mini Rev Med Chem 5(3):279–292

    PubMed  CAS  Google Scholar 

  88. Hausch F, Halttunen T, Mäki M, Khosla C (2003) Design, synthesis, and evaluation of gluten peptide analogs as selective inhibitors of human tissue transglutaminase. Chem Biol 10(3):225–231

    PubMed  CAS  Google Scholar 

  89. Chittur SV, Klem TJ, Shafer CM, Davisson VJ (2001) Mechanism for acivicin inactivation of triad glutamine amidotransferases. Biochemistry 40(4):876–887

    PubMed  CAS  Google Scholar 

  90. Choi K, Siegel M, Piper JL, Yuan L, Cho E, Strnad P, Omary B, Rich KM, Khosla C (2005) Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol 12(4):469–475

    PubMed  CAS  Google Scholar 

  91. Watts RE, Siegel M, Khosla C (2006) Structure–activity relationship analysis of the selective inhibition of transglutaminase 2 by dihydroisoxazoles. J Med Chem 49(25):7493–7501

    PubMed  CAS  Google Scholar 

  92. Pardin C, Pelletier JN, Lubell WD, Keillor JW (2008) Cinnamoyl inhibitors of tissue transglutaminase. J Org Chem 73(15):5766–5775

    PubMed  CAS  Google Scholar 

  93. Pardin C, Roy I, Chica RA, Bonneil E, Thibault P, Lubell WD, Pelletier JN, Keillor JW (2009) Photolabeling of tissue transglutaminase reveals the binding mode of potent cinnamoyl inhibitors. Biochemistry 48(15):3346–3353

    PubMed  CAS  Google Scholar 

  94. Prime ME, Andersen OA, Barker J et al (2012) Discovery and SAR of potent and selective covalent inhibitors of transglutaminase 2 for huntington’s disease. J Med Chem. doi:10.1021/jm201310y

  95. Freund KF, Doshi KP, Gaul SL, Claremon DA, Remy DC, Baldwin JJ, Pitzenberger SM, Stern AM (1994) Transglutaminase inhibition by 2-[(2-oxopropyl) thio] imidazolium derivatives: mechanism of factor XIIIa inactivation. Biochemistry 33(33):10109–10119

    PubMed  CAS  Google Scholar 

  96. Ozaki S, Ebisui E, Hamada K, Goto J-I, Suzuki AZ, Terauchi A, Mikoshiba K (2010) Potent transglutaminase inhibitors, aryl beta-aminoethyl ketones. Bioorg Med Chem Lett 20(3):1141–1144

    PubMed  CAS  Google Scholar 

  97. Lai T-S, Liu Y, Tucker T, Daniel KR, Sane DC, Toone E, Burke JR, Strittmatter WJ, Greenberg CS (2008) Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem Biol 15(9):969–978

    PubMed  CAS  Google Scholar 

  98. Schaertl S, Prime M, Wityak J, Dominguez C, Munoz-Sanjuan I, Pacifici RE, Courtney S, Scheel A, Macdonald D (2010) A profiling platform for the characterization of transglutaminase 2 (TG2) inhibitors. J Biomol Screen 15(5):478–487

    PubMed  CAS  Google Scholar 

  99. Duval E, Case A, Stein RL, Cuny GD (2005) Structure–activity relationship study of novel tissue transglutaminase inhibitors. Bioorg Med Chem Lett 15(7):1885–1889

    PubMed  CAS  Google Scholar 

  100. Klöck C, Jin X, Choi K, Khosla C, Madrid PB, Spencer A, Raimundo BC, Boardman P, Lanza G, Griffin JH (2011) Acylideneoxoindoles: a new class of reversible inhibitors of human transglutaminase 2. Bioorg Med Chem Lett 21(9):2692–2696

    PubMed  Google Scholar 

  101. Case A, Stein RL (2007) Kinetic analysis of the interaction of tissue transglutaminase with a nonpeptidic slow-binding inhibitor. Biochemistry 46(4):1106–1115

    PubMed  CAS  Google Scholar 

  102. Dafik L, Albertelli M, Stamnaes J, Sollid LM, Khosla C (2012) Activation and inhibition of transglutaminase 2 in mice. PLoS One 7(2):e30642

    PubMed  CAS  Google Scholar 

  103. Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Rispo A, Griffin M, Issekutz T, Quaratino S, Londei M (2005) Unexpected role of surface transglutaminase type II in celiac disease. Gastroenterol 129(5):1400–1413

    CAS  Google Scholar 

  104. Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297(5590):2275–2279

    PubMed  CAS  Google Scholar 

  105. Vader W, Stepniak D, Kooy Y, Mearin L, Thompson A, van Rood JJ, Spaenij L, Koning F (2003) The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci USA 100(21):12390–12395

    PubMed  CAS  Google Scholar 

  106. Kooy-Winkelaar Y, van Lummel M, Moustakas AK et al (2011) Gluten-specific T cells cross-react between HLA-DQ8 and the HLA-DQ2α/DQ8β transdimer. J Immunol 187(10):5123–5129

    PubMed  CAS  Google Scholar 

  107. Nemes Z, Petrovski G, Csosz E, Fésüs L (2005) Structure-function relationships of transglutaminases—a contemporary view. Prog Exp Tumor Res 38:19–36

    PubMed  CAS  Google Scholar 

  108. Lorand L, Conrad SM (1984) Transglutaminases. Mol Cell Biochem 58(1–2):9–35

    PubMed  CAS  Google Scholar 

  109. Facchiano A, Facchiano F (2005) Transglutaminases and their substrates. Prog Exp Tumor Res 38:37–57

    PubMed  CAS  Google Scholar 

  110. Schrode J, Folk JE (1978) Transglutaminase-catalyzed cross-linking through diamines and polyamines. J Biol Chem 253(14):4837–4840

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitan Khosla.

Additional information

This article is published as part of the Special Issue on Celiac Disease [34:6].

Cornelius Klöck and Thomas R. DiRaimondo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klöck, C., DiRaimondo, T.R. & Khosla, C. Role of transglutaminase 2 in celiac disease pathogenesis. Semin Immunopathol 34, 513–522 (2012). https://doi.org/10.1007/s00281-012-0305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0305-0

Keywords

Navigation