Skip to main content

Advertisement

Log in

Toll-like receptors in the skin

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) are important pattern-recognition receptors involved in host defense against a variety of pathogenic microorganisms. Activation of TLRs leads to the production of cytokines, chemokines, antimicrobial peptides, and upregulation costimulatory and adhesion molecules involved in innate and adaptive immune responses. TLRs are expressed on a variety of cell types found in the skin, including keratinocytes and Langerhans cells in the epidermis, resident and trafficking immune-system cells such as macrophages, dendritic cells, T and B cells, and mast cells in the dermis, endothelial cells of the skin microvasculature, and skin stromal cells such as fibroblasts and adipocytes. There have been an increasing number of reports demonstrating that TLRs play a key role in cutaneous host defense mechanisms against bacterial, fungal, and viral pathogens. In addition, TLRs have also been implicated in the pathophysiology of various inflammatory skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

APCs:

antigen-presenting cells

DCs:

dendritic cells

HBD:

human beta defensin

IRAK:

IL-1R-associated kinase

IRF3:

interferon regulatory factor 3

LCs:

Langerhans cells

MAPK:

mitogen-activated protein kinase

MyD88:

Myeloid differentiation factor-88

PAMPs:

pathogen-associated molecular patterns

PGN:

peptidoglycan

PRRs:

pattern-recognition receptors

TIR domain:

Toll/IL-1 receptor domain

TIRAP:

Toll/IL-1 receptor adaptor protein

TLR:

Toll-like receptor

TRAF6:

TNF receptor-associated factor 6

TRIF:

TIR domain containing adapter-inducing IFNβ

References

  1. Modlin RL, Cheng G (2004) From plankton to pathogen recognition. Nat Med 10:1173–1174

    Article  PubMed  CAS  Google Scholar 

  2. Sieling PA, Modlin RL (2002) Toll-like receptors: mammalian “taste receptors” for a smorgasbord of microbial invaders. Curr Opin Microbiol 5:70–75

    Article  PubMed  CAS  Google Scholar 

  3. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  PubMed  CAS  Google Scholar 

  4. Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117:979–987

    Article  PubMed  CAS  Google Scholar 

  5. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  PubMed  CAS  Google Scholar 

  6. Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343:338–344

    Article  PubMed  CAS  Google Scholar 

  7. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  8. Kang SS, Kauls LS, Gaspari AA (2006) Toll-like receptors: applications to dermatologic disease. J Am Acad Dermatol 54:951–983

    Article  PubMed  Google Scholar 

  9. McInturff JE, Modlin RL, Kim J (2005) The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol 125:1–8

    Article  PubMed  CAS  Google Scholar 

  10. Kupper TS, Fuhlbrigge RC (2004) Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 4:211–222

    Article  PubMed  CAS  Google Scholar 

  11. Robert C, Kupper TS (1999) Inflammatory skin diseases, T cells, and immune surveillance. N Engl J Med 341:1817–1828

    Article  PubMed  CAS  Google Scholar 

  12. Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527

    Article  PubMed  CAS  Google Scholar 

  13. Gupta AK, Cherman AM, Tyring SK (2004) Viral and nonviral uses of imiquimod: a review. J Cutan Med Surg 8:338–352

    Article  PubMed  Google Scholar 

  14. Beutler B, Hoebe K, Georgel P, Tabeta K, Du X (2004) Genetic analysis of innate immunity: TIR adapter proteins in innate and adaptive immune responses. Microbes Infect 6:1374–1381

    Article  PubMed  CAS  Google Scholar 

  15. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A (2005) TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629

    Article  PubMed  CAS  Google Scholar 

  16. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1526

    Article  PubMed  CAS  Google Scholar 

  17. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  18. Kawai K, Shimura H, Minagawa M, Ito A, Tomiyama K, Ito M (2002) Expression of functional Toll-like receptor 2 on human epidermal keratinocytes. J Dermatol Sci 30:185–194

    Article  PubMed  CAS  Google Scholar 

  19. Mempel M, Voelcker V, Kollisch G, Plank C, Rad R, Gerhard M, Schnopp C, Fraunberger P, Walli AK, Ring J, Abeck D, Ollert M (2003) Toll-like receptor expression in human keratinocytes: nuclear factor kappaB controlled gene activation by Staphylococcus aureus is toll-like receptor 2 but not toll-like receptor 4 or platelet activating factor receptor dependent. J Invest Dermatol 121:1389–1396

    Article  PubMed  CAS  Google Scholar 

  20. Baker BS, Ovigne JM, Powles AV, Corcoran S, Fry L (2003) Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 148:670–679

    Article  PubMed  CAS  Google Scholar 

  21. Curry JL, Qin JZ, Bonish B, Carrick R, Bacon P, Panella J, Robinson J, Nickoloff BJ (2003) Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 127:178–186

    PubMed  CAS  Google Scholar 

  22. Song PI, Park YM, Abraham T, Harten B, Zivony A, Neparidze N, Armstrong CA, Ansel JC (2002) Human keratinocytes express functional CD14 and toll-like receptor 4. J Invest Dermatol 119:424–432

    Article  PubMed  CAS  Google Scholar 

  23. Miller LS, Sorensen OE, Liu PT, Jalian HR, Eshtiaghpour D, Behmanesh BE, Chung W, Starner TD, Kim J, Sieling PA, Ganz T, Modlin RL (2005) TGF-alpha regulates TLR expression and function on epidermal keratinocytes. J Immunol 174:6137–6143

    PubMed  CAS  Google Scholar 

  24. Kollisch G, Kalali BN, Voelcker V, Wallich R, Behrendt H, Ring J, Bauer S, Jakob T, Mempel M, Ollert M (2005) Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology 114:531–541

    Article  PubMed  Google Scholar 

  25. Pivarcsi A, Bodai L, Rethi B, Kenderessy-Szabo A, Koreck A, Szell M, Beer Z, Bata-Csorgoo Z, Magocsi M, Rajnavolgyi E, Dobozy A, Kemeny L (2003) Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15:721–730

    Article  PubMed  CAS  Google Scholar 

  26. Kawai K (2003) Expression of functional toll-like receptors on cultured human epidermal keratinocytes. J Invest Dermatol 121:217–218

    Article  PubMed  CAS  Google Scholar 

  27. Lebre MC, van der Aar AM, van BL, van Capel TM, Schuitemaker JH, Kapsenberg ML, de Jong EC (2007) Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol 127:331–341

    Article  PubMed  CAS  Google Scholar 

  28. Lebre MC, Antons JC, Kalinski P, Schuitemaker JH, van Capel TM, Kapsenberg ML, de Jong EC (2003) Double-stranded RNA-exposed human keratinocytes promote Th1 responses by inducing a type-1 polarized phenotype in dendritic cells: role of keratinocyte-derived tumor necrosis factor alpha, type I interferons, and interleukin-18. J Invest Dermatol 120:990–997

    Article  PubMed  CAS  Google Scholar 

  29. Pivarcsi A, Koreck A, Bodai L, Szell M, Szeg C, Belso N, Kenderessy-Szabo A, Bata-Csorgo Z, Dobozy A, Kemeny L (2004) Differentiation-regulated expression of Toll-like receptors 2 and 4 in HaCaT keratinocytes. Arch Dermatol Res 296:120–124

    Article  PubMed  CAS  Google Scholar 

  30. Renn CN, Sanchez DJ, Ochoa MT, Legaspi AJ, Oh CK, Liu PT, Krutzik SR, Sieling PA, Cheng G, Modlin RL (2006) TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol 177:298–305

    PubMed  CAS  Google Scholar 

  31. Fujita H, Asahina A, Mitsui H, Tamaki K (2004) Langerhans cells exhibit low responsiveness to double-stranded RNA. Biochem Biophys Res Commun 319:832–839

    Article  PubMed  CAS  Google Scholar 

  32. Takeuchi J, Watari E, Shinya E, Norose Y, Matsumoto M, Seya T, Sugita M, Kawana S, Takahashi H (2003) Down-regulation of Toll-like receptor expression in monocyte-derived Langerhans cell-like cells: implications of low-responsiveness to bacterial components in the epidermal Langerhans cells. Biochem Biophys Res Commun 306:674–679

    Article  PubMed  CAS  Google Scholar 

  33. Gatti E, Velleca MA, Biedermann BC, Ma W, Unternaehrer J, Ebersold MW, Medzhitov R, Pober JS, Mellman I (2000) Large-scale culture and selective maturation of human Langerhans cells from granulocyte colony-stimulating factor-mobilized CD34+ progenitors. J Immunol 164:3600–3607

    PubMed  CAS  Google Scholar 

  34. Burns RP Jr, Ferbel B, Tomai M, Miller R, Gaspari AA (2000) The imidazoquinolines, imiquimod and R-848, induce functional, but not phenotypic, maturation of human epidermal Langerhans’ cells. Clin Immunol 94:13–23

    Article  PubMed  CAS  Google Scholar 

  35. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2:947–950

    Article  PubMed  CAS  Google Scholar 

  36. Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304:1014–1018

    Article  PubMed  CAS  Google Scholar 

  37. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869

    Article  PubMed  CAS  Google Scholar 

  38. Ito T, Liu YJ, Kadowaki N (2005) Functional diversity and plasticity of human dendritic cell subsets. Int J Hematol 81:188–196

    Article  PubMed  CAS  Google Scholar 

  39. Zarember KA, Godowski PJ (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168:554–561

    PubMed  CAS  Google Scholar 

  40. Krutzik SR, Tan B, Li H, Ochoa MT, Liu PT, Sharfstein SE, Graeber TG, Sieling PA, Liu YJ, Rea TH, Bloom BR, Modlin RL (2005) TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 11:653–660

    Article  PubMed  CAS  Google Scholar 

  41. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773

    Article  PubMed  CAS  Google Scholar 

  42. Wollenberg A, Wagner M, Gunther S, Towarowski A, Tuma E, Moderer M, Rothenfusser S, Wetzel S, Endres S, Hartmann G (2002) Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 119:1096–1102

    Article  PubMed  CAS  Google Scholar 

  43. Kulka M, Metcalfe DD (2006) TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin. Mol Immunol 43:1579–1586

    Article  PubMed  CAS  Google Scholar 

  44. Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114:174–182

    Article  PubMed  CAS  Google Scholar 

  45. Supajatura V, Ushio H, Nakao A, Akira S, Okumura K, Ra C, Ogawa H (2002) Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest 109:1351–1359

    Article  PubMed  CAS  Google Scholar 

  46. Matsushima H, Yamada N, Matsue H, Shimada S (2004) TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 173:531–541

    PubMed  CAS  Google Scholar 

  47. Bendigs S, Salzer U, Lipford GB, Wagner H, Heeg K (1999) CpG-oligodeoxynucleotides co-stimulate primary T cells in the absence of antigen-presenting cells. Eur J Immunol 29:1209–1218

    Article  PubMed  CAS  Google Scholar 

  48. Caron G, Duluc D, Fremaux I, Jeannin P, David C, Gascan H, Delneste Y (2005) Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells. J Immunol 175:1551–1557

    PubMed  CAS  Google Scholar 

  49. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T, Wang DY, Li Y, Wang HY, Wang RF (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309:1380–1384

    Article  PubMed  CAS  Google Scholar 

  50. Crellin NK, Garcia RV, Hadisfar O, Allan SE, Steiner TS, Levings MK (2005) Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J Immunol 175:8051–8059

    PubMed  CAS  Google Scholar 

  51. Gelman AE, Larosa DF, Zhang J, Walsh PT, Choi Y, Sunyer JO, Turka LA (2006) The adaptor molecule MyD88 activates PI-3 kinase signaling in CD4(+) T cells and enables CpG oligodeoxynucleotide-mediated costimulation. Immunity 25:783–793

    Article  PubMed  CAS  Google Scholar 

  52. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, Kupper TS (2006) The vast majority of CLA+ T cells are resident in normal skin. J Immunol 176:4431–4439

    PubMed  CAS  Google Scholar 

  53. Pasare C, Medzhitov R (2005) Control of B-cell responses by Toll-like receptors. Nature 438:364–368

    Article  PubMed  CAS  Google Scholar 

  54. Lau CM, Broughton C, Tabor AS, Akira S, Flavell RA, Mamula MJ, Christensen SR, Shlomchik MJ, Viglianti GA, Rifkin IR, Marshak-Rothstein A (2005) RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 202:1171–1177

    Article  PubMed  CAS  Google Scholar 

  55. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607

    Article  PubMed  CAS  Google Scholar 

  56. Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E, Mantovani A, Rothe M, Muzio M, Arditi M (1999) Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 274:7611–7614

    Article  PubMed  CAS  Google Scholar 

  57. Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ, Polentarutti N, Muzio M, Arditi M (2000) Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 275:11058–11063

    Article  PubMed  CAS  Google Scholar 

  58. Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Gallo RL (2004) Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem 279:17079–17084

    Article  PubMed  CAS  Google Scholar 

  59. Proost P, Verpoest S, Van de BK, Schutyser E, Struyf S, Put W, Ronsse I, Grillet B, Opdenakker G, Van DJ (2004) Synergistic induction of CXCL9 and CXCL11 by Toll-like receptor ligands and interferon-gamma in fibroblasts correlates with elevated levels of CXCR3 ligands in septic arthritis synovial fluids. J Leukoc Biol 75:777–784

    Article  PubMed  CAS  Google Scholar 

  60. Proost P, Vynckier AK, Mahieu F, Put W, Grillet B, Struyf S, Wuyts A, Opdenakker G, Van DJ (2003) Microbial Toll-like receptor ligands differentially regulate CXCL10/IP-10 expression in fibroblasts and mononuclear leukocytes in synergy with IFN-gamma and provide a mechanism for enhanced synovial chemokine levels in septic arthritis. Eur J Immunol 33:3146–3153

    Article  PubMed  CAS  Google Scholar 

  61. Creely SJ, McTernan PG, Kusminski CM, Fisher FM, Khanolkar M, Evans M, Harte AL, Kumar S (2006) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab DOI 10.1152/ajpendo.00302.2006

  62. Gilliet M, Conrad C, Geiges M, Cozzio A, Thurlimann W, Burg G, Nestle FO, Dummer R (2004) Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol 140:1490–1495

    Article  PubMed  CAS  Google Scholar 

  63. Henseler T, Christophers E (1995) Disease concomitance in psoriasis. J Am Acad Dermatol 32:982–986

    Article  PubMed  CAS  Google Scholar 

  64. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    Article  PubMed  CAS  Google Scholar 

  65. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160

    Article  PubMed  CAS  Google Scholar 

  66. Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861

    Article  PubMed  CAS  Google Scholar 

  67. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171:3262–3269

    PubMed  CAS  Google Scholar 

  68. Modlin RL (1994) Th1–Th2 paradigm: insights from leprosy. J Invest Dermatol 102:828–832

    Article  PubMed  CAS  Google Scholar 

  69. Kang TJ, Lee SB, Chae GT (2002) A polymorphism in the toll-like receptor 2 is associated with IL-12 production from monocyte in lepromatous leprosy. Cytokine 20:56–62

    Article  PubMed  CAS  Google Scholar 

  70. Kang TJ, Chae GT (2001) Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol 31:53–58

    Article  PubMed  CAS  Google Scholar 

  71. Kang TJ, Yeum CE, Kim BC, You EY, Chae GT (2004) Differential production of interleukin-10 and interleukin-12 in mononuclear cells from leprosy patients with a Toll-like receptor 2 mutation. Immunology 112:674–680

    Article  PubMed  CAS  Google Scholar 

  72. Krutzik SR, Ochoa MT, Sieling PA, Uematsu S, Ng YW, Legaspi A, Liu PT, Cole ST, Godowski PJ, Maeda Y, Sarno EN, Norgard MV, Brennan PJ, Akira S, Rea TH, Modlin RL (2003) Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 9:525–532

    Article  PubMed  CAS  Google Scholar 

  73. Oliveira RB, Ochoa MT, Sieling PA, Rea TH, Rambukkana A, Sarno EN, Modlin RL (2003) Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect Immun 71:1427–1433

    Article  PubMed  CAS  Google Scholar 

  74. Kim J, Ochoa MT, Krutzik SR, Takeuchi O, Uematsu S, Legaspi AJ, Brightbill HD, Holland D, Cunliffe WJ, Akira S, Sieling PA, Godowski PJ, Modlin RL (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169:1535–1541

    PubMed  CAS  Google Scholar 

  75. Liu PT, Krutzik SR, Kim J, Modlin RL (2005) Cutting edge: all-trans retinoic acid down-regulates TLR2 expression and function. J Immunol 174:2467–2470

    PubMed  CAS  Google Scholar 

  76. Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K, Klotz M, Werfel T, Herz U, Heeg K, Neumaier M, Renz H (2004) The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol 113:565–567

    Article  PubMed  CAS  Google Scholar 

  77. Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, Gobel UB, Weber JR, Schumann RR (2003) Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278(18):15587–15594, May 2

    Article  PubMed  Google Scholar 

  78. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451

    Article  PubMed  CAS  Google Scholar 

  79. Miller LS, O’Connell RM, Gutierrez MA, Pietras EM, Shahangian A, Gross CE, Thirumala A, Cheung AL, Cheng G, Modlin RL (2006) MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24:79–91

    Article  PubMed  CAS  Google Scholar 

  80. Levitz SM (2004) Interactions of Toll-like receptors with fungi. Microbes Infect 6:1351–1355

    Article  PubMed  CAS  Google Scholar 

  81. Tada H, Nemoto E, Shimauchi H, Watanabe T, Mikami T, Matsumoto T, Ohno N, Tamura H, Shibata K, Akashi S, Miyake K, Sugawara S, Takada H (2002) Saccharomyces cerevisiae-and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14-and Toll-like receptor 4-dependent manner. Microbiol Immunol 46:503–512

    PubMed  CAS  Google Scholar 

  82. Jouault T, Ibata-Ombetta S, Takeuchi O, Trinel PA, Sacchetti P, Lefebvre P, Akira S, Poulain D (2003) Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 188:165–172

    Article  PubMed  CAS  Google Scholar 

  83. Herbst-Kralovetz M, Pyles R (2006) Toll-like receptors, innate immunity and HSV pathogenesis. Herpes 13:37–41

    PubMed  CAS  Google Scholar 

  84. Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, Finberg RW (2005) Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol 79:12658–12666

    Article  PubMed  CAS  Google Scholar 

  85. Sato A, Linehan MM, Iwasaki A (2006) Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc Natl Acad Sci USA 103:17343–17348

    Article  PubMed  CAS  Google Scholar 

  86. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA 101:1315–1320

    Article  PubMed  CAS  Google Scholar 

  87. Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A (2003) Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198:513–520

    Article  PubMed  CAS  Google Scholar 

  88. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    Article  PubMed  CAS  Google Scholar 

  89. Schon MP, Schon M (2004) Immune modulation and apoptosis induction: two sides of the antitumoral activity of imiquimod. Apoptosis 9:291–298

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Modlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, L.S., Modlin, R.L. Toll-like receptors in the skin. Semin Immunopathol 29, 15–26 (2007). https://doi.org/10.1007/s00281-007-0061-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-007-0061-8

Keywords

Navigation