Skip to main content
Log in

Novel FTS-diamine/cinnamic acid hybrids inhibit tumor cell proliferation and migration and promote apoptosis via blocking Ras-related signaling in vitro

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Novel FTS-diamine/cinnamic acid hybrids 7af were prepared, and their in vitro biological activities were evaluated. It was found that 7c showed the strongest anti-proliferation activities against cancer cells in vitro and significant growth inhibition of tumor in vivo, and more potential for inhibitory selectivity to tumor cells than intermediate 6 and FTS. Furthermore, the anti-proliferative effect of 7c in Lovo cell lines followed a similar pattern, which included a dose-dependent induction of cell apoptosis via the up-regulation of Bax as well as activated caspase-3 and down-regulation of Bcl-2, and the inhibition of cancer cells migration and invasion in a concentration-dependent way. More importantly, 7c could significantly block Ras-related signaling pathways, which may contribute to its pro-apoptotic induction of the cancer cell lines and its inhibition of carcinoma cell proliferation, migration, and invasion. Therefore, our novel findings may provide a new framework for the discovery of new FTS hybrids for the intervention of human carcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Cox AD, Der CJ (2010) Ras history: the saga continues. Small GTPases 1(1):2–27

    Article  PubMed Central  PubMed  Google Scholar 

  2. Vigil D, Cherfils J, Rossman KL et al (2010) Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy. Nat Rev Cancer 10(12):842–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wang YY, Ren T, Cai YY et al (2013) MicroRNA let-7a inhibits the proliferation and invasion of non-small cell lung cancer cell line 95D by regulating K-Ras and HMGA2 gene expression. Cancer Biother Radiopharm 28(2):131–137

    Article  CAS  PubMed  Google Scholar 

  4. Zhang JG, Zhao G, Qin Q et al (2013) Nicotinamide prohibits proliferation and enhances chemosensitivity of pancreatic cancer cells through deregulating SIRT1 and Ras/Akt pathways. Pancreatology 13(2):140–146

    Article  PubMed  Google Scholar 

  5. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72(10):2457–2467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wu KL, Huang EY, Jhu EW et al (2013) Overexpression of galectin-3 enhances migration of colon cancercells related to activation of the K-Ras–Raf–Erk1/2 pathway. J Gastroenterol 48(3):350–359

    Article  CAS  PubMed  Google Scholar 

  7. Gysin Sl, Salt M, Young A et al (2011) Therapeutic strategies for targeting ras proteins. Genes Cancer 2(3):359–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wang W, Fang G, Rudolph J (2012) Ras inhibition via direct Ras binding—is there a path forward? Bioorg Med Chem Lett 22(18):5766–5776

    Article  CAS  PubMed  Google Scholar 

  9. Blum R, Cox AD, Kloog Y (2008) Inhibitors of chronically active ras: potential for treatment of human malignancies. Recent Pat Anticancer Drug Discov 3(1):31–47

    Article  CAS  PubMed  Google Scholar 

  10. Riely GJ, Johnson ML, Medinaetal C et al (2011) A phase II trial of salirasib in patients with lung adenocarcinomas with KRAS mutations. J Thorac Oncol 6(8):1435–1437

    Article  PubMed  Google Scholar 

  11. Mologni L, Brussolo S, Ceccon M et al (2012) Synergistic effects of combined Wnt/KRAS inhibition in colorectal cancer cells. PLoS One 7(12):e51449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. McCarthy AL, O’Callaghan YC, Piggott CO et al (2013) Brewers’ spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: a review. Proc Nutr Soc 72(1):117–125

    Article  CAS  PubMed  Google Scholar 

  13. Serafim TL, Carvalho FS, Marques MP et al (2011) Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem Res Toxicol 24(5):763–774

    Article  CAS  PubMed  Google Scholar 

  14. Tsai CM, Yen GC, Sun FM et al (2013) Assessment of the anti-invasion potential and mechannism of select cinnamic acid derivatives on human lung adenocarcinoma. Mol Pharm 10(5):1890–1900

    Article  CAS  PubMed  Google Scholar 

  15. Yuan Z, Zhang JP, Yang C (2012) Study on the effects of ferulic acid on the vascular smooth muscle cell migration in vitro. Zhongguo Zhong Xi Yi Jie He Za Zhi 32(2):229–233

    CAS  PubMed  Google Scholar 

  16. Welch DR, Harper DE, Yohem KH (1993) U-77,863: a novel cinnanamide isolated from Streptomyces griseoluteus that inhibits cancer invasion and metastasis. Clin Exp Metastasis 11(2):201–212

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka T, Kohno H, Nomura E et al (2003) A novel geranylated derivative, ethyl 3-(4′-geranyloxy-3′-methoxyphenyl)-2-propenoate, synthesized from ferulic acid suppresses carcinogenesis and inducible nitric oxide synthase in rat tongue. Oncology 64(2):166–175

    Article  CAS  PubMed  Google Scholar 

  18. Ling Y, Wang Z, Zhu H et al (2014) Synthesis and biological evaluation of farnesylthiosalicylamides as potential anti-tumor agents. Bioorg Med Chem 22(1):374–380

    Article  CAS  PubMed  Google Scholar 

  19. Hess S, Akermann MA, Wnendt S et al (2001) Synthesis and immunological activity of water-soluble thalidomide prodrugs. Bioorg Med Chem 9(5):1279–1291

    Article  CAS  PubMed  Google Scholar 

  20. Saxena M, Christofori G (2013) Rebuilding cancer metastasis in the mouse. Mol Oncol 7(2):283–296

    Article  CAS  PubMed  Google Scholar 

  21. Ryu BJ, Lee H, Kim SH et al (2014) PF-3758309, p21-activated kinase 4 inhibitor, suppresses migration and invasion of A549 human lung cancer cells via regulation of CREB, NF-κB, and β-catenin signalings. Mol Cell Biochem 389(1–2):69–77

    Article  CAS  PubMed  Google Scholar 

  22. Hannun YA (1997) Apoptosis and the dilemma of cancer chemotherapy. Blood 89(6):1845–1853

    CAS  PubMed  Google Scholar 

  23. Perfettini JL, Reed JC, Israel N et al (2002) Role of Bcl-2 family members in caspase-independent apoptosis during chlamydia infection. Infect Immun 70(1):55–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Harris MH, Thompson CB (2000) The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7(12):1182–1191

    Article  CAS  PubMed  Google Scholar 

  25. McCubrey JA, Steelman LS, Chappell WH et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Goldberg L, Kloog YA (2006) Ras inhibitor tilts the balance between Rac and Rho and blocks phosphatidylinositol 3-kinase-dependent glioblastoma cell migration. Cancer Res 66(24):11709–11717

    Article  CAS  PubMed  Google Scholar 

  27. Fu Z, Smith PC, Zhang L et al (2003) Effects of raf kinase inhibitor protein on suppression of prostate cancer metastasis. J Natl Cancer Inst 95(12):878–889

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the Natural Science Foundation of China (Grant No. 81302628) and the Project of “Jiangsu Six Peaks of Talent” (2014-SWYY-044), China Postdoctoral Science Foundation (2013M541707), China Pharmaceutical University for the Open Project Program of State Key Laboratory of Natural Medicines (SKLNMKF201415), and also thank a project funded by the Priority Academic Programs Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Y., Zhao, X., Li, X. et al. Novel FTS-diamine/cinnamic acid hybrids inhibit tumor cell proliferation and migration and promote apoptosis via blocking Ras-related signaling in vitro. Cancer Chemother Pharmacol 75, 381–392 (2015). https://doi.org/10.1007/s00280-014-2650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2650-2

Keywords

Navigation