Skip to main content

Advertisement

Log in

Efficacy against subcutaneous or intracranial murine GL261 gliomas in relation to the concentration of the vascular-disrupting agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), in the brain and plasma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastomas are amongst the most highly vascularised tumours, and the pursuit of anti-angiogenic approaches such as bevacizumab has provided short-term benefits. The purpose of this study was to determine whether the vascular-disrupting agent, dimethylxanthenone-4-acetic acid (DMXAA), could provide longer-lasting therapeutic benefits in a murine model of glioblastoma.

Methods

Luciferase-expressing murine GL261 glioma cells were inoculated subcutaneously or intracranially into C57Bl/6 mice. Mice with tumours were administered DMXAA, and tumours measured using callipers or by optical imager. Concentrations of DMXAA in plasma and brain were measured by LC–MS/MS.

Results

DMXAA (25 mg/kg) caused widespread necrosis at 24 h, a 9-day growth delay and complete regressions in 50 % of the mice with subcutaneous GL261 tumours. Co-administered lenalidomide (100 mg/kg) increased the growth delay to 20 days and the percentage of cures to 83 %. The same dose of DMXAA with or without lenalidomide had minimal effects on intracranial GL261 tumours. Concentrations of DMXAA extracted from brain tissue were approximately 25-fold lower than those measured in plasma 15 min to 4 h after DMXAA administration. The presence of intracranial GL261 tumours did not alter the concentrations of DMXAA entering the brain.

Conclusions

DMXAA does not appear to cross the blood–brain barrier efficiently. Thus, whilst excellent activity was obtained against subcutaneous GL261 gliomas, minimal effects were observed against intracranial GL261 tumours. These results emphasise the need to use appropriate orthotopic models for the evaluation of new approaches for the treatment of brain cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  2. Khasraw M, Lassman AB (2010) Advances in the treatment of malignant gliomas. Curr Oncol Rep 12:26–33

    Article  CAS  PubMed  Google Scholar 

  3. Chaudhry IH, O’Donovan DG, Brenchley PEC, Reid H, Roberts ISD (2001) Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology 39:409–415

    Article  CAS  PubMed  Google Scholar 

  4. Cloughesy TF, Prados MD, Wen PY, Mikkelsen T, Abrey LE, Schiff D, Yung WK, Maoxia Z, Dimery I, Friedman HS (2008) A phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM). J Clin Oncol 26:2010b

    Google Scholar 

  5. Mancuso MR, Davis R, Norberg SM, O’Brien S, Sennino B, Nakahara T, Yao VJ, Inai T, Brooks P, Freimark B (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116:2610–2621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Narayana A, Kelly P, Golfinos J, Parker E, Johnson G, Knopp E, Zagzag D, Fischer I, Raza S, Medabalmi P (2009) Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival: clinical article. J Neurosurg 110:173–180

    Article  PubMed  Google Scholar 

  7. Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, Ciampa AS, Ebbeling LG, Levy B, Drappatz J (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurol 70:779–787

    Article  CAS  Google Scholar 

  8. Ranpura V, Hapani S, Wu S (2011) Treatment-related mortality with bevacizumab in cancer patients a meta-analysis. J Am Med Assoc 305:487–494

    Article  CAS  Google Scholar 

  9. Gerstner ER, Chen P-J, Wen PY, Jain RK, Batchelor TT, Sorensen G (2010) Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib. Neuro Oncol 12:466–472

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ching L-M, Zwain S, Baguley BC (2004) Relationship between tumour endothelial cell apoptosis and tumour blood flow shutdown following treatment with the antivascular agent DMXAA in mice. Br J Cancer 90:906–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhao L, Ching L-M, Kestell P, Baguley BC (2002) The antitumour activity of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in TNF receptor-1 knockout mice. Br J Cancer 87:465–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Thomsen LL, Ching L-M, Zhuang L, Gavin JB, Baguley BC (1991) Tumor-dependent increased plasma nitrate concentrations as an indication of the antitumor effect of flavone-8-acetic acid and analogues in mice. Cancer Res 51:77–81

    CAS  PubMed  Google Scholar 

  13. Folaron M, Kalmuk J, Lockwood J, Frangou C, Vokes J, Turowski SG, Merzianu M, Rigual NR, Sullivan-Nasca M, Kuriakose MA, Hicks WL Jr, Singh AK, Seshadri M (2013) Vascular priming enhances chemotherapeutic efficacy against head and neck cancer. Oral Oncol 49:893–902

    Article  CAS  PubMed  Google Scholar 

  14. Kanwar JR, Kanwar RK, Pandey S, Ching L-M, Krissansen GW (2001) Vascular attack by 5,6-dimethylxanthenone-4-acetic acid combined with B7.1 (CD80)-mediated immunotherapy overcomes immune resistance and leads to the eradication of large tumors and multiple tumor foci. Cancer Res 61:1948–1956

    CAS  PubMed  Google Scholar 

  15. Matthews KE, Hermans IF, Roberts JM, Ching L-M, Ronchese F (2006) 5,6-Dimethylxanthenone-4-acetic acid treatment of a non-immunogenic tumour does not synergize with active or passive CD8 + T-cell immunotherapy. Immunol Cell Biol 84:383–389

    Article  CAS  PubMed  Google Scholar 

  16. Seshadri M, Ciesielski MJ (2009) MRI-based characterization of vascular disruption by 5,6-dimethylxanthenone-acetic acid in gliomas. J Cereb Blood Flow Metab 29:1373–1382

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lara PN, Douillard J-Y, Nakagawa K, von Pawel J, McKeage MJ, Albert I, Losonczy G, Reck M, Heo D-S, Fan X (2011) Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol 29:2965–2971

    Article  CAS  PubMed  Google Scholar 

  18. Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M, Jiang Z, Rathinam VAK, Monks B, Jin T, Xiao TS, Vogel SN, Vance RE, Fitzgerald KA (2013) Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J Immunol 190:5216–5225

    Article  CAS  PubMed  Google Scholar 

  19. Prantner D, Perkins DJ, Lai W, Williams MS, Sharma S, Fitzgerald KA, Vogel SN (2012) 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) activates stimulator of interferon gene (STING)-dependent innate immune pathways and is regulated by mitochondrial membrane potential. J Biol Chem 287:39776–39788

    Article  CAS  PubMed  Google Scholar 

  20. Tijono SM, Guo K, Henare K, Palmer BD, Wang LS, Albelda SM, Ching L-M (2013) Identification of human-selective analogues of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Br J Cancer 108:1306–1315

    Article  CAS  PubMed  Google Scholar 

  21. Knight R (2005) IMiDs: a novel class of immunomodulators. Semin Oncol 32(suppl 5):S24–S30

    Article  CAS  PubMed  Google Scholar 

  22. Ching L-M, Xu ZF, Gummer BH, Palmer BD, Joseph WR, Baguley BC (1995) Effect of thalidomide on tumour necrosis factor production and anti-tumour activity induced by 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer 72:339–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chung F, Wang L-C, Kestell P, Baguley B, Ching L-M (2004) Modulation of thalidomide pharmacokinetics by cyclophosphamide or 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in mice: the role of tumour necrosis factor. Cancer Chemother Pharmacol 53:377–383

    Article  CAS  PubMed  Google Scholar 

  24. Kestell P, Zhao L, Baguley BC, Palmer BD, Muller G, Paxton JW, Ching L-M (2000) Modulation of the pharmacokinetics of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) in mice by thalidomide. Cancer Chemother Pharmacol 46:135–141

    Article  CAS  PubMed  Google Scholar 

  25. Rewcastle GW, Atwell GJ, Zhuang L, Baguley BC, Denny WA (1991) Potential antitumour agents. 61. Structure-activity relationships for in vivo colon 38 activity among disusbstituted 9-Oxo-9H-xanthene-4-acetic acids. J Med Chem 34:217–221

    Article  CAS  PubMed  Google Scholar 

  26. Muller GW, Stirling DI, Chen R (1997) US patent 5635517

  27. Hobbs S, Jitrapakdee S, Wallace JC (1998) Development of a bicistronic vector driven by the human polypeptide chain elongation factor 1α promoter for creation of stable mammalian cell lines that express very high levels of recombinant proteins. Biochem Biophys Res Commun 252:368–372

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Zhao M, Rudek MA, He P, Vogelstein B (2007) Development and validation of a liquid chromatography/tandem mass spectrometry method for the determination of DMXAA in human and mouse plasma. J Chromatogr 852:217–222

    Article  CAS  Google Scholar 

  29. Pather K, Helsby NA, Palmer BD, Ching L-M (2011) Development and validation of an high performance liquid chromatography assay for the determination of a fluorinated analogue of thalidomide, N-(2,6-dioxopiperidin-3-yl)-3,4,5,6- tetrafluorophthalamic acid and lenalidomide. J Liq Chromatogr Relat Technol 34:83–92

    Article  CAS  Google Scholar 

  30. Baguley BC (2003) Antivascular therapy of cancer: DMXAA. Lancet Oncol 4:141–148

    Article  CAS  PubMed  Google Scholar 

  31. Ding Q, Kestell P, Baguley BC, Palmer BD, Paxton JW, Muller G, Ching L-M (2002) Potentiation of the antitumour effect of cyclophosphamide in mice by thalidomide. Cancer Chemother Pharmacol 50:186–192

    Article  CAS  PubMed  Google Scholar 

  32. Cao Z, Joseph WR, Browne WL, Mountjoy KG, Palmer BD, Baguley BC, Ching L-M (1999) Thalidomide increases both intra-tumoural tumour necrosis factor-alpha production and anti-tumour activity in response to 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer 80:716–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Hofman FM, Chen TC (2010) The basic science of Avastin (Bevacizumab) therapy. In: Chen TC (ed) Controversies in neuro-oncology. Bentham Science Publishers, Avastin and Malignant Gliomas, pp 1–6

    Google Scholar 

  34. Wang L-CS, Thomsen L, Sutherland R, Reddy CB, Tijono SM, Chen C-JJ, Angel CE, Dunbar PR, Ching L-M (2009) Neutrophil influx and chemokine production during early phases of the antitumor response to the vascular disrupting agent DMXAA (ASA404). Neoplasia 8:793–803

    Google Scholar 

  35. Banks WA (2005) Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des 11:973–984

    Article  CAS  PubMed  Google Scholar 

  36. Rosenberg GA, Estrada EY, Dencoff JE, Stetler-Stevenson WG (1995) Tumor necrosis factor-α-induced gelatinase B causes delayed opening of the blood-brain barrier: an expanded therapeutic window. Brain Res 703:151–155

    Article  CAS  PubMed  Google Scholar 

  37. Warth A, Kröger S, Wolburg H (2004) Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol 107:311–318

    Article  CAS  PubMed  Google Scholar 

  38. On NH, Mitchell R, Savant SD, Bachmeier CJ, Hatch GM, Miller DW (2012) Examination of blood-brain barrier (BBB) integrity in a mouse brain tumor model. J Neurooncol 111:133–143

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ching L-M, Browne WL, Tchnernegovski R, Gregory T, Baguley BC, Palmer BD (1998) Interaction of thalidomide, phthalimide analogues of thalidomide and pentoxifylline with the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid: concomitant reduction of serum tumour necrosis factor-alpha and enhancement of anti-tumour activity. Br J Cancer 78:336–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ando Y, Fuse E, Figg WD (2002) Thalidomide metabolism by the CYP2C subfamily. Clin Cancer Res 8:1964–1973

    CAS  PubMed  Google Scholar 

  41. Zhou SF, Tingle MD, Kestell P, Paxton JW (2002) Species differences in the metabolism of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid in vitro: implications for prediction of metabolic interactions in vivo. Xenobiotica 32:87–107

    Article  CAS  PubMed  Google Scholar 

  42. Yu LJ, Drewes P, Gustafsson K, Brain EC, Hecht JE, Waxman DJ (1999) In vivo modulation of alternative pathways of P-450-catalysed cyclophosphamide metabolism: impact on pharmacokinetics and antitumour activity. J Pharmacol Exp Ther 288:928–937

    CAS  PubMed  Google Scholar 

  43. Kumar G, Lau H, Laskin O (2009) Lenalidomide: in vitro evaluation of the metabolism and assessment of cytochrome P450 inhibition and induction. Cancer Chemother Pharmacol 63:1171–1175

    Article  CAS  PubMed  Google Scholar 

  44. Fine HA, Figg WD, Jaeckle K, Wen PY, Kyritsis AP, Loeffler JS, Levin VA, Black PM, Kaplan R, Pluda JM (2000) Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 18:708

    CAS  PubMed  Google Scholar 

  45. Fine HA, Kim L, Albert PS, Duic JP, Ma H, Zhang W, Tohnya T, Figg WD, Royce C (2007) A phase I trial of lenalidomide in patients with recurrent primary central nervous system tumors. Clin Cancer Res 13:7101–7106

    Article  CAS  PubMed  Google Scholar 

  46. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350

    Article  CAS  PubMed  Google Scholar 

  47. Lopez-Girona A, Mendy D, Ito T, Miller K, Gandhi AK, Kang J, Karasawa S, Carmel G, Jackson P, Abbasian M (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26:2326–2335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Chung F, Lu J, Palmer BD, Kestell P, Browett P, Baguley BC, Tingle M, Ching L-M (2004) Thalidomide pharmacokinetics and metabolite formation in mice, rabbits and multiple myeloma patients. Clin Cancer Res 10:5949–5956

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs Ian Hermans and Martin Hunn for their assistance in establishing the intracranial GL261 model. The study was funded by project grants from the Auckland Medical Research Foundation and the Cancer Society of New Zealand, Auckland Division.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Ming Ching.

Electronic supplementary material

Below is the link to the electronic supplementary material.

280_2014_2395_MOESM1_ESM.tif

BLI of subcutaneous GL261 tumours in CD-1 nude mice on day 7, 10 and 15 after implantation (a). GL261 tumour volumes calculated from manual calliper measurements of tumour diameters (b). BLI measurements of the same tumours (c). Mean ± s.e.m. of six mice (TIFF 3523 kb)

280_2014_2395_MOESM2_ESM.tif

Representative whole brain from a mouse with day-7, day-10 or day-14 GL261 tumour (a). Relative BLI of intracranial GL261 tumours measured days 7, 10 and 15 after implantation, untreated (circles), lenalidomide (100 mg/kg) (triangles), DMXAA (25 mg/kg) (squares), and the combination of lenalidomide (100 mg/kg) with DMXAA (25 mg/kg) (diamonds). Points represent mean ± s.e.m. of six mice per group (b) (TIFF 1939 kb)

280_2014_2395_MOESM3_ESM.tif

Relative bioluminescence of intracranial GL261 tumours from individual animals over time, untreated (a), lenalidomide (100 mg/kg) (b), DMXAA (25 mg/kg) (c), or the combination of lenalidomide (100 mg/kg) with DMXAA (25 mg/kg) (d) over time (TIFF 1079 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yung, R., Seyfoddin, V., Guise, C. et al. Efficacy against subcutaneous or intracranial murine GL261 gliomas in relation to the concentration of the vascular-disrupting agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), in the brain and plasma. Cancer Chemother Pharmacol 73, 639–649 (2014). https://doi.org/10.1007/s00280-014-2395-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2395-y

Keywords

Navigation