Skip to main content

Advertisement

Log in

PD173074, a selective FGFR inhibitor, reverses ABCB1-mediated drug resistance in cancer cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Specific tyrosine kinase inhibitors were recently reported to modulate the activity of ABC transporters, leading to an increase in the intracellular concentration of their substrate drugs. In this study, we determine whether PD173074, a specific fibroblast growth factor receptor (FGFR) inhibitor, could reverse ABC transporter-mediated multidrug resistance.

Methods

3-(4,5-Dimethylthiazol-yl)-2,5-diphenyllapatinibrazolium bromide assay was used to determine the effect of PD173074 on reversal of ABC transporter-mediated multidrug resistance (MDR). In addition, [3H]-paclitaxel accumulation/efflux assay, western blotting analysis, ATPase, and photoaffinity labeling assays were done to study the interaction of PD173074 on ABC transporters.

Results

PD173074 significantly sensitized both ABCB1-transfected and drug-selected cell lines overexpressing this transporter to substrate anticancer drugs colchicine, paclitaxel, and vincristine. This effect of PD173074 is specific to ABCB1, as no significant interaction was detected with other ABC transporters such as ABCC1 and ABCG2. The observed reversal effect seems to be primarily due to the decreased active efflux of [3H]-paclitaxel in ABCB1 overexpressing cells observed in efflux assay. In addition, no significant change in the ABCB1 expression was observed when ABCB1 overexpressing cells were exposed to 5 μM PD173074 for up to 3 days, thereby further suggesting its role in modulating the function of the transporter. In addition, PD173074 stimulated the ATPase activity of ABCB1 in a concentration-dependent manner, indicating a direct interaction with the transporter. Interestingly, PD173074 did not inhibit photolabeling of ABCB1 with [125I]-iodoarylazidoprazosin (IAAP), showing that it binds at a site different from that of IAAP in the drug-binding pocket.

Conclusions

Here, we report for the first time, PD173074, an inhibitor of the FGFR, to selectively reverse ABCB1 transporter-mediated MDR by directly blocking the efflux function of the transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Calcagno AM, Ambudkar SV (2010) Molecular mechanisms of drug resistance in single-step and multi-step drug-selected cancer cells. Methods Mol Biol 596:77–93. doi:10.1007/978-1-60761-416-6_5

    Article  PubMed  CAS  Google Scholar 

  2. Choi CH (2005) ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 5:30. doi:10.1186/1475-2867-5-30

    Article  PubMed  Google Scholar 

  3. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11(7):1156–1166. doi:10.1101/gr.184901

    Article  PubMed  CAS  Google Scholar 

  4. Fardel O, Lecureur V, Guillouzo A (1996) The P-glycoprotein multidrug transporter. Gen Pharmacol 27(8):1283–1291. doi:10.1016/S0306-3623(96)00081-X

    Article  PubMed  CAS  Google Scholar 

  5. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234. doi:10.1038/nrd1984

    Article  PubMed  CAS  Google Scholar 

  6. Doyle LA, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22(47):7340–7358. doi:10.1038/sj.onc.1206938

    Article  PubMed  Google Scholar 

  7. Chen ZS, Robey RW, Belinsky MG, Shchaveleva I, Ren XQ, Sugimoto Y, Ross DD, Bates SE, Kruh GD (2003) Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 63(14):4048–4054

    PubMed  CAS  Google Scholar 

  8. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627. doi:10.1146/annurev.med.53.082901.103929

    Article  PubMed  CAS  Google Scholar 

  9. Kruh GD, Belinsky MG (2003) The MRP family of drug efflux pumps. Oncogene 22(47):7537–7552. doi:10.1038/sj.onc.1206953

    Article  PubMed  CAS  Google Scholar 

  10. Sodani K, Patel A, Kathawala RJ, Chen ZS (2012) Multidrug resistance associated proteins in multidrug resistance. Chin J Cancer 31(2):58–72. doi:10.5732/cjc.011.10329

    Article  PubMed  CAS  Google Scholar 

  11. Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11(4):265–283. doi:10.1016/S0928-0987(00)00114-7

    Article  PubMed  CAS  Google Scholar 

  12. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398. doi:10.1146/annurev.pharmtox.39.1.361

    Article  PubMed  CAS  Google Scholar 

  13. Hollt V, Kouba M, Dietel M, Vogt G (1992) Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein. Biochem Pharmacol 43(12):2601–2608

    Article  PubMed  CAS  Google Scholar 

  14. Germann UA, Shlyakhter D, Mason VS, Zelle RE, Duffy JP, Galullo V, Armistead DM, Saunders JO, Boger J, Harding MW (1997) Cellular and biochemical characterization of VX-710 as a chemosensitizer: reversal of P-glycoprotein-mediated multidrug resistance in vitro. Anticancer Drugs 8(2):125–140

    Article  PubMed  CAS  Google Scholar 

  15. van Zuylen L, Sparreboom A, van der Gaast A, van der Burg ME, van Beurden V, Bol CJ, Woestenborghs R, Palmer PA, Verweij J (2000) The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin Cancer Res 6(4):1365–1371

    PubMed  Google Scholar 

  16. Yanagisawa T, Newman A, Coley H, Renshaw J, Pinkerton CR, Pritchard-Jones K (1999) BIRICODAR (VX-710; Incel): an effective chemosensitizer in neuroblastoma. Br J Cancer 80(8):1190–1196. doi:10.1038/sj.bjc.6690485

    Article  PubMed  CAS  Google Scholar 

  17. Rowinsky EK, Smith L, Wang YM, Chaturvedi P, Villalona M, Campbell E, Aylesworth C, Eckhardt SG, Hammond L, Kraynak M, Drengler R, Stephenson J Jr, Harding MW, Von Hoff DD (1998) Phase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP. J Clin Oncol 16(9):2964–2976

    PubMed  CAS  Google Scholar 

  18. Dantzig AH, Shepard RL, Law KL, Tabas L, Pratt S, Gillespie JS, Binkley SN, Kuhfeld MT, Starling JJ, Wrighton SA (1999) Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J Pharmacol Exp Ther 290(2):854–862

    PubMed  CAS  Google Scholar 

  19. Martin C, Berridge G, Mistry P, Higgins C, Charlton P, Callaghan R (1999) The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br J Pharmacol 128(2):403–411. doi:10.1038/sj.bjp.0702807

    Article  PubMed  CAS  Google Scholar 

  20. Mistry P, Stewart AJ, Dangerfield W, Okiji S, Liddle C, Bootle D, Plumb JA, Templeton D, Charlton P (2001) In vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res 61(2):749–758

    PubMed  CAS  Google Scholar 

  21. Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8(5):411–424

    Article  PubMed  CAS  Google Scholar 

  22. Leonard GD, Polgar O, Bates SE (2002) ABC transporters and inhibitors: new targets, new agents. Curr Opin Investig Drugs 3(11):1652–1659

    PubMed  CAS  Google Scholar 

  23. Tiwari AK, Sodani K, Wang SR, Kuang YH, Ashby CR Jr, Chen X, Chen ZS (2009) Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol 78(2):153–161. doi:10.1016/j.bcp.2009.04.002

    Article  PubMed  CAS  Google Scholar 

  24. Shen T, Kuang YH, Ashby CR, Lei Y, Chen A, Zhou Y, Chen X, Tiwari AK, Hopper-Borge E, Ouyang J, Chen ZS (2009) Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10). PLoS ONE 4(10):e7520. doi:10.1371/journal.pone.0007520

    Article  PubMed  Google Scholar 

  25. Dai CL, Tiwari AK, Wu CP, Su XD, Wang SR, Liu DG, Ashby CR Jr, Huang Y, Robey RW, Liang YJ, Chen LM, Shi CJ, Ambudkar SV, Chen ZS, Fu LW (2008) Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res 68(19):7905–7914. doi:10.1158/0008-5472.CAN-08-0499

    Article  PubMed  CAS  Google Scholar 

  26. Knights V, Cook SJ (2010) De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther 125(1):105–117. doi:10.1016/j.pharmthera.2009.10.001

    Article  PubMed  CAS  Google Scholar 

  27. Jeffers M, LaRochelle WJ, Lichenstein HS (2002) Fibroblast growth factors in cancer: therapeutic possibilities. Expert Opin Ther Targets 6(4):469–482. doi:10.1517/14728222.6.4.469

    Article  PubMed  CAS  Google Scholar 

  28. Hamby JM, Connolly CJ, Schroeder MC, Winters RT, Showalter HD, Panek RL, Major TC, Olsewski B, Ryan MJ, Dahring T, Lu GH, Keiser J, Amar A, Shen C, Kraker AJ, Slintak V, Nelson JM, Fry DW, Bradford L, Hallak H, Doherty AM (1997) Structure-activity relationships for a novel series of pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors. J Med Chem 40(15):2296–2303. doi:10.1021/jm970367n

    Article  PubMed  CAS  Google Scholar 

  29. Mohammadi M, Froum S, Hamby JM, Schroeder MC, Panek RL, Lu GH, Eliseenkova AV, Green D, Schlessinger J, Hubbard SR (1998) Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J 17(20):5896–5904. doi:10.1093/emboj/17.20.5896

    Article  PubMed  CAS  Google Scholar 

  30. Akiyama S, Seth P, Pirker R, FitzGerald D, Gottesman MM, Pastan I (1985) Potentiation of cytotoxic activity of immunotoxins on cultured human cells. Cancer Res 45(3):1005–1007

    PubMed  CAS  Google Scholar 

  31. Robey RW, Shukla S, Finley EM, Oldham RK, Barnett D, Ambudkar SV, Fojo T, Bates SE (2008) Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol 75(6):1302–1312. doi:10.1016/j.bcp.2007.12.001

    Article  PubMed  CAS  Google Scholar 

  32. Muller M, Yong M, Peng XH, Petre B, Arora S, Ambudkar SV (2002) Evidence for the role of glycosylation in accessibility of the extracellular domains of human MRP1 (ABCC1). Biochemistry 41(31):10123–10132. doi:10.1021/bi026075s

    Article  PubMed  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein−dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  34. Sodani K, Tiwari AK, Singh S, Patel A, Xiao ZJ, Chen JJ, Sun YL, Talele TT, Chen ZS (2012) GW583340 and GW2974, human EGFR and HER-2 inhibitors, reverse ABCG2- and ABCB1-mediated drug resistance. Biochem Pharmacol 83(12):1613–1622. doi:10.1016/j.bcp.2012.02.028

    Article  PubMed  CAS  Google Scholar 

  35. Ambudkar SV (1998) Drug-stimulatable ATPase activity in crude membranes of human MDR1-transfected mammalian cells. Methods Enzymol 292:504–514. doi:10.1016/S0076-6879(98)92039-0

    Article  PubMed  CAS  Google Scholar 

  36. Sauna ZE, Ambudkar SV (2000) Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein. Proc Natl Acad Sci USA 97(6):2515–2520

    Article  PubMed  CAS  Google Scholar 

  37. Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW, Bates SE, Shen T, Ashby CR Jr, Fu LW, Ambudkar SV, Chen ZS (2007) Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 67(22):11012–11020. doi:10.1158/0008-5472.CAN-07-2686

    Article  PubMed  CAS  Google Scholar 

  38. Tiwari AK, Sodani K, Dai CL, Abuznait AH, Singh S, Xiao ZJ, Patel A, Talele TT, Fu L, Kaddoumi A, Gallo JM, Chen ZS (2013) Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett 328(2):307–317. doi:10.1016/j.canlet.2012.10.001

    Article  PubMed  CAS  Google Scholar 

  39. Mi YJ, Liang YJ, Huang HB, Zhao HY, Wu CP, Wang F, Tao LY, Zhang CZ, Dai CL, Tiwari AK, Ma XX, To KK, Ambudkar SV, Chen ZS, Fu LW (2010) Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res 70(20):7981–7991. doi:10.1158/0008-5472.CAN-10-0111

    Article  PubMed  CAS  Google Scholar 

  40. Hegedus T, Orfi L, Seprodi A, Varadi A, Sarkadi B, Keri G (2002) Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta 1587(2–3):318–325. doi:10.1016/S0925-4439(02)00095-9

    PubMed  CAS  Google Scholar 

  41. Shukla S, Robey RW, Bates SE, Ambudkar SV (2009) Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos 37(2):359–365. doi:10.1124/dmd.108.024612

    Article  PubMed  CAS  Google Scholar 

  42. Tong XZ, Wang F, Liang S, Zhang X, He JH, Chen XG, Liang YJ, Mi YJ, To KK, Fu LW (2012) Apatinib (YN968D1) enhances the efficacy of conventional chemotherapeutical drugs in side population cells and ABCB1-overexpressing leukemia cells. Biochem Pharmacol 83(5):586–597. doi:10.1016/j.bcp.2011.12.007

    Article  PubMed  CAS  Google Scholar 

  43. Pardo OE, Latigo J, Jeffery RE, Nye E, Poulsom R, Spencer-Dene B, Lemoine NR, Stamp GW, Aboagye EO, Seckl MJ (2009) The fibroblast growth factor receptor inhibitor PD173074 blocks small cell lung cancer growth in vitro and in vivo. Cancer Res 69(22):8645–8651. doi:10.1158/0008-5472.CAN-09-1576

    Article  PubMed  CAS  Google Scholar 

  44. Friesel RE, Maciag T (1995) Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J 9(10):919–925

    PubMed  CAS  Google Scholar 

  45. Song S, Wientjes MG, Gan Y, Au JL (2000) Fibroblast growth factors: an epigenetic mechanism of broad spectrum resistance to anticancer drugs. Proc Natl Acad Sci USA 97(15):8658–8663. doi:10.1073/pnas.140210697

    Article  PubMed  CAS  Google Scholar 

  46. Pardo OE, Arcaro A, Salerno G, Tetley TD, Valovka T, Gout I, Seckl MJ (2001) Novel cross talk between MEK and S6K2 in FGF-2 induced proliferation of SCLC cells. Oncogene 20(52):7658–7667. doi:10.1038/sj.onc.1204994

    Article  PubMed  CAS  Google Scholar 

  47. Pardo OE, Wellbrock C, Khanzada UK, Aubert M, Arozarena I, Davidson S, Bowen F, Parker PJ, Filonenko VV, Gout IT, Sebire N, Marais R, Downward J, Seckl MJ (2006) FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCepsilon, B-Raf and S6K2. EMBO J 25(13):3078–3088. doi:10.1038/sj.emboj.7601198

    Article  PubMed  CAS  Google Scholar 

  48. Dimitroff CJ, Klohs W, Sharma A, Pera P, Driscoll D, Veith J, Steinkampf R, Schroeder M, Klutchko S, Sumlin A, Henderson B, Dougherty TJ, Bernacki RJ (1999) Anti-angiogenic activity of selected receptor tyrosine kinase inhibitors, PD166285 and PD173074: implications for combination treatment with photodynamic therapy. Invest New Drugs 17(2):121–135

    Article  PubMed  CAS  Google Scholar 

  49. Liu KJ, He JH, Su XD, Sim HM, Xie JD, Chen XG, Wang F, Liang YJ, Singh S, Sodani K, Talele TT, Ambudkar SV, Chen ZS, Wu HY, Fu LW (2013) Saracatinib (AZD0530) is a potent modulator of ABCB1-mediated multidrug resistance in vitro and in vivo. Int J Cancer 132(1):224–235. doi:10.1002/ijc.27649

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Michael M. Gottesman (NCI, NIH, Bethesda, MD, USA) for KB-3-1 cells, Shinichi Akiyama (Kagoshima University, Japan) for the KB-C2 cell lines, Susan E. Bates and Robert W. Robey (NIH, USA) for the FTC, HEK293/pcDNA3.1, HEK293/ABCB1, H460, and H460/MX20 cell lines. Dr. Tanaji Talele and Rishil J Kathawala (St. John’s University) for carefully reading and editing the manuscript. This work was supported by funds from NIH (No. 1R15CA143701) and RayBiotech, Inc to Z.S. Chen. E.E. Chufan and S.V. Ambudkar were supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe-Sheng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, A., Tiwari, A.K., Chufan, E.E. et al. PD173074, a selective FGFR inhibitor, reverses ABCB1-mediated drug resistance in cancer cells. Cancer Chemother Pharmacol 72, 189–199 (2013). https://doi.org/10.1007/s00280-013-2184-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2184-z

Keywords

Navigation