Skip to main content

Advertisement

Log in

Phase II and gene expression analysis trial of neoadjuvant capecitabine plus irinotecan followed by capecitabine-based chemoradiotherapy for locally advanced rectal cancer: Hoosier Oncology Group GI03-53

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We designed this study in locally advanced rectal cancer to determine the pathological response, toxicity, and disease-free survival (DFS) with induction capecitabine plus irinotecan followed by capecitabine-based chemoradiotherapy (CRT) and analyze the gene expression of enzymes involved in the metabolism of capecitabine and irinotecan for associations with response and toxicity.

Methods

Patients with T3/T4 or node positive rectal cancer were treated with capecitabine 1,000 mg/m2 twice daily (BID) days 1–14, and irinotecan 200 mg/m2 on day 1 every 21 days for 2 cycles, followed by capecitabine 825 mg/m2 BID days 1–5 per week with concurrent radiotherapy 50.4 Gy in 28 fractions. Surgical resection occured a median of 7.4 weeks after CRT. Gene expression levels or sequencing were used to analyze carboxylesterase-converting enzymes (CES1, CES2), thymidylate synthase (TS), thymidine phosphorylase (TP), dehydropyrimidine dehydrogenase (DPD), topoisomerase I (TOPO I), and uridine-diphosphate (UDP) glucuronosyl transferase 1A1 in pre- and post-treatment tumor and normal tissue samples.

Results

Twenty-two patients were enrolled, and 18 completed neoadjuvant therapy and underwent R0 resection. Two patients with UGT1A1 7/7 had grade 3 and 4 neutropenic fever and sepsis. Pathological complete response (pCR) occurred in 6 of 18 patients (33 %) and 10 (56 %) had tumor and/or nodal downstaging. The 3-year DFS was 75.5 % (95 % CI, 39.7–91.8 %). Locoregional control rate was 100 %. We observed higher TP gene expression in pCR patients, but no correlations with toxicity.

Conclusions

This neoadjuvant regimen was safe and demonstrated significant antitumor activity. High TP tumor gene expression was associated with obtaining pCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sauer R, Becker H, Hohenberger W et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351:1731–1740

    Article  PubMed  CAS  Google Scholar 

  2. Gerard JP, Conroy T, Bonnetain F et al (2006) Preoperative radiotherapy with or without concurrent fluorouracil and leucovorin in T3-4 rectal cancers: results of FFCD 9203. J Clin Oncol 24:4620–4625

    Article  PubMed  Google Scholar 

  3. Roh MS, Colangelo LH, O’Connell MJ et al (2009) Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J Clin Oncol 27:5124–5130

    Article  PubMed  Google Scholar 

  4. Fernandez-Martos C, Pericay C, Aparicio J et al (2010) Phase II, randomized study of concomitant chemoradiotherapy followed by surgery and adjuvant capecitabine plus oxaliplatin (CAPOX) compared with induction CAPOX followed by concomitant chemoradiotherapy and surgery in magnetic resonance imaging-defined, locally advanced rectal cancer: Grupo cancer de recto 3 study. J Clin Oncol 28:859–865

    Article  PubMed  CAS  Google Scholar 

  5. Meropol NJ, Gold PJ, Diasio RB et al (2006) Thymidine phosphorylase expression is associated with response to capecitabine plus irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 24:4069–4077

    Article  PubMed  CAS  Google Scholar 

  6. Schiel MA, Green SL, Davis WI et al (2007) Expression and characterization of a human carboxylesterase 2 splice variant. J Pharmacol Exp Ther 323:94–101

    Article  PubMed  CAS  Google Scholar 

  7. Monaghan G, Ryan M, Seddon R et al (1996) Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and Gilbert’s syndrome. Lancet 347:578–581

    Article  PubMed  CAS  Google Scholar 

  8. Fleming TR (1982) One-sample multiple testing procedure for phase II clinical trials. Biometrics 38:143–151

    Article  PubMed  CAS  Google Scholar 

  9. Crane CH, Eng C, Feig BW et al (2010) Phase II trial of neoadjuvant bevacizumab, capecitabine, and radiotherapy for locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 76:824–830

    Article  PubMed  CAS  Google Scholar 

  10. Horisberger K, Treschl A, Mai S et al (2009) Cetuximab in combination with capecitabine, irinotecan, and radiotherapy for patients with locally advanced rectal cancer: results of a Phase II MARGIT trial. Int J Radiat Oncol Biol Phys 74:1487–1493

    Article  PubMed  CAS  Google Scholar 

  11. Gerard JP, Azria D, Gourgou-Bourgade S et al (2010) Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol 28:1638–1644

    Article  PubMed  CAS  Google Scholar 

  12. Meropol NJ (1998) Oral fluoropyrimidines in the treatment of colorectal cancer. Eur J Cancer 34:1509–1513

    Article  PubMed  CAS  Google Scholar 

  13. Salonga D, Danenberg KD, Johnson M et al (2000) Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 6:1322–1327

    PubMed  CAS  Google Scholar 

  14. Koopman M, Venderbosch S, Van Tinteren H et al (2009) Predictive and prognostic markers for the outcome of chemotherapy in advanced colorectal cancer, a retrospective analysis of the phase III randomized CAIRO study. Eur J Cancer 45:1999–2006

    Article  PubMed  CAS  Google Scholar 

  15. Toi M, Atiqur Rahman M, Bando H et al (2005) Thymidine phosphorylase (platelet-derived endothelial-cell growth factor) in cancer biology and treatment. Lancet Oncol 6:158–166

    Article  PubMed  CAS  Google Scholar 

  16. Kim TD, Li G, Song KS et al (2009) Radiation-induced thymidine phosphorylase upregulation in rectal cancer is mediated by tumor-associated macrophages by monocyte chemoattractant protein-1 from cancer cells. Int J Radiat Oncol Biol Phys 73:853–860

    Article  PubMed  CAS  Google Scholar 

  17. Braun MS, Richman SD, Quirke P et al (2008) Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol 26:2690–2698

    Article  PubMed  CAS  Google Scholar 

  18. Horisberger K, Erben P, Muessle B et al (2009) Topoisomerase I expression correlates to response to neoadjuvant irinotecan-based chemoradiation in rectal cancer. Anticancer Drugs 20:519–524

    Article  PubMed  CAS  Google Scholar 

  19. Johnston SJ, Ridge SA, Cassidy J et al (1999) Regulation of dihydropyrimidine dehydrogenase in colorectal cancer. Clin Cancer Res 5:2566–2570

    PubMed  CAS  Google Scholar 

  20. Ulukan H, Muller MT, Swaan PW (2001) Downregulation of topoisomerase I in differentiating human intestinal epithelial cells. Int J Cancer 94:200–207

    Article  PubMed  CAS  Google Scholar 

  21. Sanghani SP, Sanghani PC, Schiel MA et al (2009) Human carboxylesterases: an update on CES1, CES2 and CES3. Protein Pept Lett 16:1207–1214

    Article  PubMed  CAS  Google Scholar 

  22. Quinney SK, Sanghani SP, Davis WI et al (2005) Hydrolysis of capecitabine to 5′-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide. J Pharmacol Exp Ther 313:1011–1016

    Article  PubMed  CAS  Google Scholar 

  23. Sanghani SP, Quinney SK, Fredenburg TB et al (2004) Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3. Drug Metab Dispos 32:505–511

    Article  PubMed  CAS  Google Scholar 

  24. Tanimoto K, Kaneyasu M, Shimokuni T et al (2007) Human carboxylesterase 1A2 expressed from carboxylesterase 1A1 and 1A2 genes is a potent predictor of CPT-11 cytotoxicity in vitro. Pharmacogenet Genom 17:1–10

    Article  CAS  Google Scholar 

  25. Javle MM, Yang G, Nwogu CE et al (2009) Capecitabine, oxaliplatin and radiotherapy: a phase IB neoadjuvant study for esophageal cancer with gene expression analysis. Cancer Invest 27:193–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by Roche Pharmaceuticals and Pfizer Pharmaceuticals.

Conflict of interest

No conflict of interest exists for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gabriela Chiorean.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiorean, E.G., Sanghani, S., Schiel, M.A. et al. Phase II and gene expression analysis trial of neoadjuvant capecitabine plus irinotecan followed by capecitabine-based chemoradiotherapy for locally advanced rectal cancer: Hoosier Oncology Group GI03-53. Cancer Chemother Pharmacol 70, 25–32 (2012). https://doi.org/10.1007/s00280-012-1883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1883-1

Keywords

Navigation