Skip to main content
Log in

Evaluation of a Bioabsorbable Self-Expandable Vein Stent-Base Made of Poly(l-lactide) In Vitro and In Vivo

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to evaluate performance and tissue response to a self-expandable bioabsorbable vein stent-base cut from a tube with enhanced stiffness and strength in vitro and in vivo.

Methods

A diamond-shaped stent-base was cut from a sequential biaxially strained poly(l-lactide) (PLLA) tube for optimized performance. The performance of the stent-base was evaluated in a finite element analysis model, and validation was attempted in vitro through a cyclic flat-plate compression and radial force measurement. The performance of the stent-base was tested in vivo using 3 sheep with 2 implants each for 2 and 3½ weeks, respectively.

Results

In vitro the stent-base showed an elliptical deformation but no fractures. In vivo the stent-base showed adequate radial force and no migration. All implanted stent-bases showed multiple fractures not only at the predicted stress zones but at all connecting points. Fragments of the caudal stent-base stayed in the vein wall indicating sufficient tissue coverage to avoid embolization of the fractured stent pieces, whereas fragments from the cranial device remaining were few. Neointima formation was confirmed histologically at 2 and 3½ weeks.

Conclusion

A bioabsorbable self-expandable stent-base made from PLLA for large veins seems feasible, but over time, the PLLA used in this study appears too stiff and lacks the sufficient flexibility to move with the vena cava, causing multiple fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagata T, Makutani S, Uchida H, Kichikawa K, Maeda M, Yoshioka T, Anai H, Sakaguchi H, Yoshimura H. Follow-up results of 71 patients undergoing metallic stent placement for the treatment of a malignant obstruction of the superior vena cava. Cardiovasc Intervent Radiol. 2007;30:959–67.

    Article  PubMed  Google Scholar 

  2. Imberti D, Ageno W, Dentali F, Donadini M, Mandredini R, Gallerani M. Retrievable vena cava filters: a clinical review. J Thromb Thrombolysis. 2012;33:258–66.

    Article  CAS  PubMed  Google Scholar 

  3. Rizvi AZ, Kalra M, Bjarnason H, Bower TC, Schleck C, Gloviczi P. Benign superior vena cava syndrome: stenting is now the first line of treatment. J Vasc Surg. 2008;47:372–80.

    Article  PubMed  Google Scholar 

  4. Nuutinen J, Clerc C, Törmälä P. Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents. J Biomater Sci Polymer Edn. 2003;14:667–87.

    Google Scholar 

  5. Hayman D, Bergsson C, Miller S, Moreno M, Moore JE. The effect of static and dynamic loading on degradation of PLLA stent fibers. J Biomech Eng. 2014;136:1–9.

    Article  Google Scholar 

  6. Welch TR, Eberhart RC, Reisch J, Chuong C. Influence of thermal annealing on the mechanical properties of PLLA coiled stents. Cardiovasc Eng Technol. 2014;5:270–80.

    Article  Google Scholar 

  7. Vaazjanen A, Nuutinen J, Isotalo T, Törmälä P, Tammela TLJ, Talja M. Expansion and fixation properties of a new braided bioabsorbable urethral stent: an experimental study in the rabbit. J Urol. 2003;169:1171–4.

    Article  Google Scholar 

  8. Wu Y, Shen L, Wang Q, Ge L, Xie J, Hu X, Sun A, Qian J. Comparison of acute recoil between bioabsorbable poly-l-lactic acid XINSORB stent and metallic stent in porcine model. J Biomed Biotechnol. 2012;13:1–8.

    Google Scholar 

  9. Ormiston JA, Serruys PW. Bioabsorbable coronary stents. Circ Cardiovasc Intervent. 2009;2:255–60.

    Article  CAS  Google Scholar 

  10. Ginsberg G, Shah J, Carty A, Kaufmann C, Nuutinen J, Törmäla P. In vivo evaluation of a new bioabsorbable self-expanding biliary stent. Gastrointest Endosc. 2003;58:777–84.

    Article  PubMed  Google Scholar 

  11. Mario CD, Borgia F. Assimilating the current clinical data of fully bioabsorbable stents. EuroIntervention Suppl. 2009;5:103–8.

    Article  Google Scholar 

  12. Thomas SD, Ofri A, Tang T, Englund R. Endovascular reconstruction of an interrupted inferior vena cava. Int J Surg Case Rep. 2014;5:59–62.

    Article  PubMed  Google Scholar 

  13. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv. 2012;30:321–8.

    Article  CAS  PubMed  Google Scholar 

  14. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  CAS  Google Scholar 

  15. Van Ditzhuijzen NS, Karanosos A, Van der Sijde JN, Van Soest G, Regar E. Bioabsorbable stent. In: Jang I, editor. Cardiovascular OCT imaging. Dordrecht: Springer; 2015. p. 179–93.

    Google Scholar 

  16. Zhang F, Hailei L, Liang G, Zhang H. Development and evaluation of a new biodegradable vena cava filter in a canine model. Asian J Surg. 2015;xx:1–5.

  17. Eggers MD, McArthurt MJ, Figueira TA, Abdelsalam ME, Dixon KP, Pageon LR, Wallace MJ, Huang SY. Pilot in vivo study of an absorbable polydioxanone vena cava filter. J Vasc Surg. 2015;3:409–20.

    PubMed  Google Scholar 

  18. Ou X, Cakmak M. Comparative study on development of structural hierarchy in constrained annealed simultaneous and sequential biaxially stretched polylactic acid films. Polymer. 2010;51:783–92.

    Article  CAS  Google Scholar 

  19. Tsai C, Wu R, Cheng H, Li S, Siao Y, Kong D, Jang G. Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films. Polym Degrad Stab. 2010;95:1292–8.

    Article  CAS  Google Scholar 

  20. Wu J, Yen M, Wu C, Li C, Kuo MC. Effect of biaxial stretching on thermal properties, shrinkage and mechanical properties of poly (lactic acid) films. J Polym Environ. 2013;21:303–11.

    Article  CAS  Google Scholar 

  21. Løvdal A, Andreasen JW, Mikkelsen LP, Agersted K, Almdal K. Characterization of biaxial strain of poly(l-lactide) tubes. Polym Int. 2016;65:133–41.

    Article  Google Scholar 

  22. Lingaiah K. Machine design data handbook. New York: McGraw-Hill; 1994.

    Google Scholar 

  23. Wallace DJ, Allision M, Stone MB. Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers. Acad Emergy Med. 2010;17:96–9.

    Article  Google Scholar 

  24. Maddox S. Measuring vital in signs. In: Baillie L, editor. Developing practical adult nursing skills. Fargo: CRC Press Taylor & Francis; 2009. p. 116–518.

    Google Scholar 

  25. Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci. 2013;16:1154–61.

    Article  CAS  PubMed  Google Scholar 

  26. Calve S, Ready A, Huppenbauer C, Main R, Neu CP. Optical clearing in dense connective tissues to visualize cellular connectivity in situ. PLoS ONE. 2015;10:1–14.

    Article  CAS  Google Scholar 

  27. Vieira AC, Guedes RM, Tita V. Considerations for the design of polymeric biodegradable products. J Polym Eng. 2013;33:292–302.

    Article  Google Scholar 

  28. Irving JD, Dondelinger RF, Reidy JF, Schild H, Dick R, Adam A, Maynar M, Zollikofer CL. Gianturco serf-expanding stents: clinical experience in the vena cava and large veins. Cardiovasc Intervent Radiol. 1992;15:328–33.

    Article  CAS  PubMed  Google Scholar 

  29. Johnston CR, Lee K, Flewitt J, Moore R, Dobson GM, Thornton GM. The mechanical properties of endovascular stents: an in vitro assessment. Cardiovasc Eng. 2010;10:128–35.

    Article  PubMed  Google Scholar 

  30. Miyazaki K, Nishibe T, Manase H, Ohkashiwa H, Takahashi T, Watanabe S, Katoh H, Morita Y. Gianturco stents for the venous system: a detailed pathological study. Jpn J Surg. 1998;28:396–400.

    CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the Non-clinical Testing Team at Cook Research Incorporated for conducting the animal study.

Funding

This study was funded by Innovation Fund Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Liv Vest Løvdal.

Ethics declarations

Conflict of interest

Studied sponsored by William Cook Europe as a part of the Industrial PhD Program.

Ethical approval

 All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Løvdal, A.L.V., Calve, S., Yang, S. et al. Evaluation of a Bioabsorbable Self-Expandable Vein Stent-Base Made of Poly(l-lactide) In Vitro and In Vivo. Cardiovasc Intervent Radiol 40, 112–119 (2017). https://doi.org/10.1007/s00270-016-1491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-016-1491-2

Keywords

Navigation