Skip to main content
Log in

Synthesis and solid solution in “rubidium richterite”, Rb(NaCa)Mg5Si8O22(OH,F)2

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The OH–F substitution in “synthetic Rb-richterite” has been investigated along the join Rb(NaCa)Mg5Si8O22(OH)2–Rb(NaCa)Mg5Si8O22(F)2. Syntheses were done by conventional hydrothermal techniques (Tuttle-type vessels) at 800 °C, 1 kbar P(H2O). SEM microscopy showed very high yields of acicular to prismatic amphibole crystals up to XF = F/(F + OH) = 0.6. Beyond this value, a micaceous phase and a very fine-grained granular phase were present. Powder X-ray diffraction patterns show a single amphibole phase below XF = 0.6; above XF = 0.6, a distinct peak at d = 12.18 Å indicates the presence of a mica and there is a broad hump starting at ~ 20o 2θ and ~ 15o wide, both features increasing in intensity with increasing XF. Cell dimensions at XF = 0 are compatible with an ideal amphibole composition Rb(NaCa)Mg5Si8O22(OH)2 and evolve with increasing XF up to XF = 0.6, where there is a sharp discontinuity in a, β and V. The infrared OH-stretching spectrum of the OH end-member shows a main band at 3732 cm−1 which is assigned to the local MgMgMg–OH→ Rb arrangement, and a minor band at 3670 cm−1 assigned to the local MgMgMg–OH→ □ arrangement. This latter band indicates a slight departure toward tremolite. Intermediate OH–F compositions show the appearance of a second band at 3718 cm−1, whose intensity is proportional to the F content in the system, in accord with OH−OH and OH–F arrangements across the filled A-site. For XF > 0.6, the OH-stretching spectra are complicated by the appearance of two more peaks at 3705 and 3685 cm−1. Additional bands at lower wavenumbers, centered around 3595, 3540 and 3475 cm−1, respectively, are better resolved by collecting the spectra on disks heated at 250 °C to remove the adsorbed moisture in the pellet. Combining the behavior of unit-cell dimensions and the infrared spectra with mass-balance arguments indicates that at high XF values, Na replaces part of the Rb at the A-site in the amphibole and the tremolite component of the amphibole increases, while “Rb tetrasilicic magnesium mica” crystallizes, along with semi-amorphous nanophases. The variation in band intensities as a function of XF indicates that OH and F randomly occupy local pairs of O(3) sites across a (filled) A-site, and that there is no short-range order of OH and F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bayliss P, Kaesz HD, Nickel EH (2005) The use of chemical-element adjectival modifiers in mineral nomenclature. Can Mineral 43:1429–1433

    Article  Google Scholar 

  • Comeforo JE, Kohn JA (1954) Synthetic asbestos investigations. I. Study of synthetic fluor-tremolite. Am Mineral 39:537–548

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997) Rock-forming minerals, double-chain silicates, vol 2. Geological Society, London, p 764

    Google Scholar 

  • Della Ventura G (1992) Recent developments in the synthesis and characterization of amphiboles. Synthesis and crystal-chemistry of richterites. Trends Miner 1:153–192

    Google Scholar 

  • Della Ventura G (2017) The analysis of asbestos minerals using vibrational spectroscopies (FTIR, Raman): crystal-chemistry, identification and environmental applications. In: Gualtieri A (ed) Mineral fibres: crystal chemistry, chemical-physical properties, biological interactions and toxicity. EMU Notes in Mineralogy, vol 18. Mineralogical Society, London, pp 135–169

  • Della Ventura G, Robert J-L (1990) Synthesis, XRD and FT–IR studies of strontium richterites. Eur J Mineral 2:171–175

    Article  Google Scholar 

  • Della Ventura G, Robert J-L, Bény JM (1991) Tetrahedrally coordinated Ti4+ in synthetic Ti–rich potassic richterite: evidence from XRD, FTIR and Raman studies. Am Mineral 76:1134–1140

    Google Scholar 

  • Della Ventura G, Robert J-L, Raudsepp M, Hawthorne FC (1993a) Site occupancies in monoclinic amphiboles: rietveld structure refinement of synthetic nickel magnesium cobalt potassium richterite. Am Mineral 78:633–640

    Google Scholar 

  • Della Ventura G, Robert J-L, Bény J-M, Raudsepp M, Hawthorne FC (1993b) The OH-F substitution in Ti-rich potassium-richterites: rietveld structure refinement and FTIR and micro-Raman spectroscopic studies of synthetic amphiboles in the system K2O-Na2O-CaO-MgO-SiO2-TiO2-H2O-HF. Am Mineral 78:980–987

    Google Scholar 

  • Della Ventura G, Robert J-L, Raudsepp M, Hawthorne FC (1993c) Site occupancies in monoclinic amphiboles: rietveld structure refinement of synthetic nickel magnesium cobalt potassium richterite. Am Mineral 78:633–640

    Google Scholar 

  • Della Ventura G, Robert J-L, Hawthorne FC, Prost R (1996) Short-range disorder of Si and Ti in the tetrahedral double-chain unit of synthetic Ti-bearing potassium-richterite. Am Mineral 81:56–60

    Article  Google Scholar 

  • Della Ventura G, Robert J-L, Raudsepp M, Hawthorne FC, Welch MD (1997) Site occupancies in synthetic monoclinic amphiboles: rietveld structure-refinement and infrared spectroscopy of (nickel, magnesium, cobalt)-richterite. Am Mineral 82:291–301

    Article  Google Scholar 

  • Della Ventura G, Hawthorne FC, Robert J-L, Delbove F, Welch MD, Raudsepp M (1999) Short-range order of cations in synthetic amphiboles along the richterite–pargasite join. Eur J Mineral 11:79–94

    Article  Google Scholar 

  • Della Ventura G, Redhammer G, Robert J-L, Sergent J, Iezzi G, Cavallo A (2016) Crystal-chemistry of synthetic amphiboles along the join richterite–ferro-richterite: a combined spectroscopic (FriR, Mossbauer), XRPD and microchemical study. Can Mineral 54:97–114

    Article  Google Scholar 

  • Douglas JAV, Plant AG (1968) Amphibole: a first occurrence in an enstatite chondrite. Meteorites 4:166

    Google Scholar 

  • Eitel W (1954) The physical chemistry of the silicates. Chicago University Press, Chicago

    Google Scholar 

  • Forbes WC (1971) Synthesis and stability relations of richterite, Na2CaMg5Si8O22 (OH)2. Am Mineral 56:997–1000

    Google Scholar 

  • Gottschalk M, Andrut M (1998) Structural and chemical characterization of synthetic (Na, K)-richterite solid solutions by EMP, HRTEM, XRD and OH-valence vibrational spectroscopy. Phys Chem Miner 25:101–111

    Article  Google Scholar 

  • Gottschalk M, Andrut M, Melzer S (1999) The determination of the cummingtonite content of synthetic tremolite. Eur J Mineral 11:967–982

    Article  Google Scholar 

  • Hamilton DL, Henderson CMB (1968) The preparation of silicate compositions by a gelling method. Mineral Mag 36:832–838

    Google Scholar 

  • Hawthorne FC (1978) The relationship between cell volume, mean bond length and effective ionic radius. Acta Crystallogr A 34:139–140

    Article  Google Scholar 

  • Hawthorne FC (2016) Short-range atomic arrangements in minerals. I: the minerals of the amphibole, tourmaline and pyroxene supergroups. Eur J Mineral 28:513–536

    Article  Google Scholar 

  • Hawthorne FC, Della Ventura G (2007) Short-range order in amphiboles. In: Hawthorne FC, Della Oberti R, Ventura G, Mottana A (eds) Amphiboles: crystal chemistry, occurrence and health issues. Reviews in mineralogy and geochemistry, vol 67. Mineralogical Society of America and Geochemical Society, Washington, D.C., pp 173–222

    Chapter  Google Scholar 

  • Hawthorne FC, Della Ventura G, Robert J-L, Welch MD, Raudsepp M, Jenkins DM (1997) A Rietveld and infrared study of synthetic amphiboles along the potassium-richterite–tremolite join. Am Mineral 82:708–716

    Article  Google Scholar 

  • Hawthorne FC, Della Ventura G, Oberti R, Robert J-L, Iezzi G (2005) Short-range order in minerals: amphiboles. Can Mineral 43:1895–1920

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048

    Article  Google Scholar 

  • Huebner JS, Papike JJ (1970) Synthesis and crystal chemistry of sodium-potassium richterite (Na, K)NaCaMg5Si8O22(OH, F)2: a model for amphiboles. Am Mineral 55:1973–1992

    Google Scholar 

  • Melzer M, Gottschalk M, Heinrich W (1998) Experimentally determined partitioning of Rb between richterites and aqueous (Na, K)-chloride solutions. Contrib Mineral Petrol 133:315–328

    Article  Google Scholar 

  • Melzer S, Gottschalk M, Andrut M, Heinrich W (2000) Crystal chemistry of K-richterite-richterite-tremolite solid solutions: a SEM, EMP, XRD, HRTEM and IR study. Eur J Mineral 12:273–291

    Article  Google Scholar 

  • Olsen E (1967) Amphibole: first occurrence in a meteorite. Science 156:61–62

    Article  Google Scholar 

  • Olsen E, Huebner JS, Douglas JAV, Plant AG (1973) Meteoritic amphiboles. Am Mineral 58:869–872

    Google Scholar 

  • Phillips R, Rowbotham G (1973) Studies on synthetic alkali amphiboles. Papers and proceedings of the fifth general meeting. I.M.A, Cambridge, pp 249–254

  • Redhammer GJ, Roth G (2002) Crystal structure and Mössbauer spectroscopy of the synthetic amphibole potassic-ferri-ferrorichterite at 298 K and low temperatures (80 K–110 K). Eur J Mineral 14:105–114

    Article  Google Scholar 

  • Robert JL, Della Ventura G, Thauvin J-L (1989a) The infrared OH–stretching region of synthetic richterites in the system Na2O–K2O–CaO–MgO–SiO2–H2O-HF. Eur J Mineral 1:203–211

    Article  Google Scholar 

  • Robert J-L, Beny JM, Benyani C, Volfinger M (1989b) Characterization of lepidolites by Raman and infrared spectrometries. I. Relationships between OH-stretching wavenumbers and composition. Can Mineral 27:225–235

    Google Scholar 

  • Robert J-L, Della Ventura G, Raudsepp M, Hawthorne FC (1993) Rietveld structure refinement of synthetic strontium-rich potassium-richterites. Eur J Mineral 5:199–206

    Article  Google Scholar 

  • Robert J-L, Della Ventura G, Hawthorne FC (1999) Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles. Am Mineral 84:86–91

    Article  Google Scholar 

  • Scordari F, Schingaro E, Mesto E, Lacalamita M (2012) 2M 1-phlogopite from Black Hills (South Australia): the first case of configurational polytype in micas. Am Mineral 97:2016–2023

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Wiles DB, Young RA (1981) A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J Appl Crystallogr 14:149–151

    Article  Google Scholar 

Download references

Acknowledgements

FCH was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. The Grant to Department of Science, Roma Tre University (MIUR-Italy Dipartimenti di Eccellenza, ARTICOLO 1, COMMI 314-337 LEGGE 232/2016) is gratefully acknowledged. Thanks are due to M. Rieder, D. Jenkins and an anonymous referee for positive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Della Ventura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Ventura, G., Hawthorne, F.C. & Iezzi, G. Synthesis and solid solution in “rubidium richterite”, Rb(NaCa)Mg5Si8O22(OH,F)2. Phys Chem Minerals 46, 759–770 (2019). https://doi.org/10.1007/s00269-019-01037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-019-01037-x

Keywords

Navigation