Skip to main content
Log in

High-temperature behaviour of astrophyllite, K2NaFe7 2+Ti2(Si4O12)2O2(OH)4F: a combined X-ray diffraction and Mössbauer spectroscopic study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

High-temperature X-ray powder-diffraction study of astrophyllite, K2NaFe7 2+Ti2(Si4O12)2O2(OH)4F, and investigation of the samples annealed at 600 and 700 °C, reveal the occurrence of a phase transformation due to the thermal iron oxidation coupled with (1) deprotonation according to the scheme Fe2+ + OH → Fe3+ + O2− + ½H2 ↑, and (2) defluorination according to the scheme Fe2+ + F → Fe3+ + O2−. The phase transformation occurs at 500 °C, it is irreversible and without symmetry changes. The mineral decomposes at 775 °C. Both astrophyllite and its high-temperature dehydroxylated (HT) modification are triclinic, P-1. The unit-cell parameters are a = 5.3752(1), b = 11.8956(3), c = 11.6554(3) Å, α = 113.157(3), β = 94.531(2), γ = 103.112(2)º, V = 655.47(3) Å3 for unheated astrophyllite, and a = 5.3287(4), b = 11.790(1), c = 11.4332(9) Å, α = 112.530(8), β = 94.539(6), γ = 103.683(7)º, V = 633.01(9) Å3 for the HT (annealed) modification of astrophyllite. The oxidation of iron is confirmed: (1) by the presence of an exothermic effect at 584 °C in the DTA/TG curves in an Ar–O atmosphere and its absence in an Ar–Ar atmosphere and (2) by ex situ Mössbauer spectroscopy that showed the oxidation of Fe2+ to Fe3+ in the samples heated to 700 °C. Deprotonation was detected by the evolution of IR spectra in the region 3600–3000 cm−1 for astrophyllite and its HT modification. Defluorination was detected by the presence of F in the electron microprobe analysis of unheated astrophyllite and the absence of F in the analysis of unpolished heated astrophyllite. The significant difference between astrophyllite and its HT modification is in the reduction of the M–O interatomic distances after heating to 500 °C and the distortion indices of the MO6 and Dφ6 octahedra. Thermal behaviour of astrophyllite in the 25–475 °C temperature range can be described as a volume thermal expansion with maximal coefficient of thermal expansion in the direction perpendicular to the plane of the HOH layers. In contrast, the HT phase experiences a strong contraction in the 600–775 °C temperature range, again in the direction perpendicular to the plane of the HOH layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agakhanov AA, Pautov LA, Uvarova YuA, Sokolova E, Hawthorne FC, Karpenko VY (2008) Nalivkinite, Li2NaFe2+ 7Ti2 (Si8O24)O2(OH)4F, a new mineral of the astrophyllite group from the Darai-Pioz Massif, Tadjikistan. New Data Miner 43:5–12

    Google Scholar 

  • Agakhanov AA, Pautov LA, Sokolova E, Abdu YA, Hawthorne FC, Karpenko VY (2016) Two astrophyllite-supergroup minerals, bulgakite and nalivkinite: bulgakite, a new mineral from the Darai-Pioz alkaline massif, Tajikistan and revision of the crystal structure and chemical formula of nalivkinite. Can Miner 54:3–48

    Article  Google Scholar 

  • Bačik P, Ozdin D, Miglierini M, Kardošová P, Pentrák M, Haloda J (2011) Crystallochemical effects of heat treatment on Fe-dominant tourmalines from Dolni Bory (Czech Republic) and Vlachovo(Slovakia). Phys Chem Miner 38:599–611

    Article  Google Scholar 

  • Baur WH (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Cryst B 30:1195–1215

    Article  Google Scholar 

  • Bayliss P (2007) Cesium kupletskite renamed kupletskite-(Cs). Mineral Mag 71:365–367

    Article  Google Scholar 

  • Belousov R, Filatov S (2007) Algorithm for calculating the thermal expansion tensor and constructing the thermal expansion diagram for crystals. Glass Phys Chem 33(3):271–275

    Article  Google Scholar 

  • Brindley GW, Lemaitre J (1987) Thermal, oxidation and reduction reactions of clay minerals. In Newman ACD (ed) Chemistry of clay and clay minerals. Monograph, Mineralogical Society, pp 319–370

  • Brown ID (2009) Recent developments in the methods and applications of the bond valence model. Chem Rev 109:6858–6919

    Article  Google Scholar 

  • Bruker AXS (2009) Topas V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe, Germany

  • Bruker-AXS (2014) APEX2. Version 2014.11–0. Madison, Wisconsin, USA

  • Bubnova RS, Firsova VA, Filatov SK (2013) Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (theta to tensor-TTT). Glass Phys Chem 39(3):347–350

    Article  Google Scholar 

  • Cámara F, Sokolova E, Abdu Y, Hawthorne FC (2010) The crystal structures of niobophyllite, kupletskite-(Cs) and Sn-rich astrophyllite: revisions to the crystal chemistry of the astrophyllite-group minerals. Can Miner 48:1–16

    Article  Google Scholar 

  • Cámara F, Sokolova E, Abdu Y, Hawthorne FC (2014) Nafertisite, Na3Fe2+ 10Ti2(Si6O17)2O2(OH)6F(H2O)2, from Mt. Kukisvumchorr, Khibiny alkaline massif, Kola peninsula, Russia: Refinement of the crystal structure and revision of the chemical formula. Eur J Miner 26:689–700

    Article  Google Scholar 

  • Caucia F, Callegari A, Oberti R, Lingaretti O, Hawthorne FC (1994) Structural aspects of oxidation-dehydrogenation in staurolite. Can Mineral 32:477–489

    Google Scholar 

  • Chon C-M, Lee C-K, Song Y, Kim SA (2006) Structural changes and oxidation of ferroan phlogopite with increasing temperature: in situ neutron powder diffraction and Fourier transform infrared spectroscopy. Phys Chem Miner 33:289–299

    Article  Google Scholar 

  • Della Ventura G (2015) FTIR spectroscopy at HT: applications and problems. Period Miner ECMS 2015:7–8

    Google Scholar 

  • Donnay G, Morimoto N, Takeda H (1964) Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Cryst 17:1374–1381

    Article  Google Scholar 

  • Ferrow EA, Annersten H, Gunawardane RP (1988) Mössbauer effect study on the mixed valence state of iron in tourmaline. Miner Mag 52:221–228

    Article  Google Scholar 

  • Filip J, Bosi F, Novák M, Skogby H, Tuček J, Čuda J, Wildner M (2012) Iron redox reactions in the tourmaline structure: High-temperature treatment of Fe3+-rich schorl. Geochim Cosmochim Acta 86:239–256

    Article  Google Scholar 

  • Génin JMR, Guérin O, Herbillon AJ, Kuzmann E, Mills SJ, Morin G, Ona-Nguema G, Ruby C, Upadhyay C (2013) Redox topotactic reactions in FeII–III(oxy)hydroxycarbonate new minerals related to fougèrite in gleysols: «trébeurdenite and mössbauerite». Hyperfine Interact 204:71–81

    Article  Google Scholar 

  • Génin JMR, Mills SJ, Christy AG, Guérin O, Herbillon AJ, Kuzmann E, Ona-Nguema G, Ruby C, Upadhyay C (2014a) Mössbauerite, Fe3+ 6O4(OH)8[CO3]·3H2O, the fully oxidized ‘green rust’ mineral from Mont Saint-Michel Bay, France. Miner Mag 78:447–465

    Article  Google Scholar 

  • Génin JMR, Christy A, Kuzmann E, Mills S, Ruby C (2014b) Structure and occurrences of <green rust> related new minerals of the <fougérite> group, trébeurdenite and mössbauerite, belonging to the <hydrotalcite> supergroup; how Mössbauer spectroscopy helps XRD. Hyperfine Interact 226:459–482

    Article  Google Scholar 

  • Güttler B, Niemann W, Redfern (1989) S.A.T. EXAFS and XANES spectroscopy study of the oxidation and deprotonation of biotite. Miner Mag 53:591–602

    Article  Google Scholar 

  • Hazen RM, Downs RT, Prewitt CT (2000) Principles of comparative crystal chemistry. In: Hazen RM, Downs RT (eds) Reviews in mineralogy and geochemistry, high-temperature and high-pressure crystal chemistry, vol 14. Mineralogical Society of America, Washington, pp 1–33

  • Kampf AR, Rossman GR, Steele IM, Pluth JJ, Dunning GE, Walstrom RE (2010) Devitoite, a new heterophyllosilicate mineral with astrophyllite-like layers from Eastern Fresno county, California. Can Miner 48:29–40

    Article  Google Scholar 

  • Kapustin YL (1972) Zircophyllite—the zirconium analogue of astrophyllite. Zap Vses Miner Obshchest 101(4):459–463 (in Russian)

    Google Scholar 

  • Kapustin YL (1973) Zircophyllite, the zirconium analog of astrophyllite. Int Geol Rev 15:621–625

    Article  Google Scholar 

  • Khomyakov AP, Cámara F, Sokolova E, Abdu Y, Hawthorne FC (2011) Sveinbergeite, Ca(Fe2+ 6Fe3+)Ti2(Si4O12)2O2(OH)5(H2O)4, a new astrophyllite-group mineral from the Larvik Plutonic Complex, Oslo Region, Norway: description and crystal structure. Miner Mag 75:2687–2702

    Article  Google Scholar 

  • Korovushkin VV, Kuzmin V, Belov VF (1979) Mossbauer studies of structural features in tourmaline of various genesis. Phys Chem Miner 4:209–220

    Article  Google Scholar 

  • Kunz M, Brown ID (1994) Out-of-center distortions around octahedrally coordinated d0-transition metals. J Solid State Chem 115:395–406

    Article  Google Scholar 

  • Langreiter T, Kahlenberg V (2014) TEV—a program for the determination and visualization of the thermal expansion tensor from diffraction data. Institute of Mineralogy and Petrography, University of Innsbruck, Austria

    Google Scholar 

  • Lepp H (1957) Stages in the oxidation of magnetite. Am Miner 42:679–681

    Google Scholar 

  • Liebau F (1985) Structural chemistry of silicates: structure, bonding and classification. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Mills SJ, Christy AG, Génin JMR, Kameda T, Colombo F (2012) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Miner Mag 76:1289–1336

    Article  Google Scholar 

  • Momma K, Izumi F (2011) Vesta 3 for free-dimensional visualization of crystals, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  • Murad E, Wagner U (1996) The thermal behaviuor of an Fe-rich illite. Clay Miner 31:45–52

    Article  Google Scholar 

  • Nickel EH, Rowland JF, Charette DJ (1964) Niobophyllite—the niobium analogue of astrophyllite; a new mineral from Seal Lake, Labrador. Can Miner 8:40–52

    Google Scholar 

  • Oberti R, Della Ventura G, Dyar MD (2015) Combining structure refinement and spectroscopies: hints and warnings for more efficient tolls to decipher the mechanism of deprotonation in amphiboles. Period Miner ECMS 2015:131–132

    Google Scholar 

  • Piilonen PC, Lalonde AE, Mcdonald AM, Gault RA (2000) Niobokupletskite, a new astrophyllite-group mineral from Mont Saint-Hilaire, Quebec, Canada: description and crystal structure. Can Miner 38:627–639

    Article  Google Scholar 

  • Piilonen PC, McDonald AM, LaLonde AE (2001) Kupletskite polytypes from the Lovozero massif, Kola Peninsula, Russia: Kupletskite-1A and kupletskite-Ma2b2c. Eur J of Miner 13:973–984

    Article  Google Scholar 

  • Piilonen PC, LaLonde AE, McDonald AM, Gault RA, Larsen AO (2003a) Insights into astrophyllite–group minerals. I. Nomenclature, composition and development of a standardized general formula. Can Miner 41:1–26

    Article  Google Scholar 

  • Piilonen PC, McDonald AM, LaLonde AE (2003b) Insights into astrophyllite–group minerals. II. Crystal chemistry. Can Miner 41:27–54

    Article  Google Scholar 

  • Pillonen PC, Pekov IV, Back M, Steede T, Gault RA (2006) Crystal-structure refinement of a Zn-rich kupletskite from Mont Saint-Hilaire, Quebec, with contributions to the geochemistry of zinc in peralkaline environments. Miner Mag 70:565–578

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172(3983):567–570

    Article  Google Scholar 

  • Russell RL, Guggenheim S (1999) Crystal structures of near-end-member phlogopite at high temperatures and heat-treated Fe-rich phlogopite: the influence of the O, OH, F site. Can Miner 37:711–729

    Google Scholar 

  • Semenov EI (1956) Kupletskite—a new mineral of the astrophyllite group. Doklady Akademii Nauk SSSR 108:933–936

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  • Shi N, Ma Z, Li G, Yamnova NA, Pushcharovsky DY (1998) Structure refinement of monoclinic astrophyllite. Acta Crystallogr B 54:109–114

    Article  Google Scholar 

  • Sokolova E (2012) Further developments in the structure topology of the astrophyllite-group minerals. Miner Mag 76:863–882

    Article  Google Scholar 

  • Sokolova E, Cámara F (2008) Re-investigation of the crystal structure of magnesium astrophyllite. Eur J Miner 20:253–260

    Article  Google Scholar 

  • Sokolova E, Hawthorne FC (2016) The crystal structure of zircophyllite, K2NaFe2+ 7Zr2(Si4O12)2O2(OH)4F, an astrophyllite-supergroup mineral from Mont Saint-Hilaire, Québec, Canada. Can Miner (in press)

  • Sokolova E, Cámara F, Hawthorne FC, Cirotti M (2017a) The astrophyllite supergroup: nomenclature and classification. Miner Mag 81:143–150

    Article  Google Scholar 

  • Sokolova E, Cámara F, Hawthorne FC, Semenov EI, Cirotti M (2017b) Lobanovite K2Na(Fe2+ 4Mg2Na)Ti2(Si4O12)2O2(OH)4, a new mineral of astrophyllite supergroup and its relation to magnesioastrophyllite. Miner Mag 81:175–181

    Article  Google Scholar 

  • Stepanov AV, Bekenova GK, Levin VL, Sokolova E, Hawthorne FC, Dobrovol’skaya EA (2012) Tarbagataite, (K,□)2(Ca,Na)(Fe2+ Mn)7Ti2(Si4O12)2O2(OH)4(OH, F), a new astrophyllite-group mineral species from the Verkhnee Espe Deposit, Akjailyautas Mountains, Kazakhstan: description and crystal structure. Can Miner 50:159–168

    Article  Google Scholar 

  • Susta U, Della Ventura G, Bellatreccia F, Hawthorne FC, Oberti R (2015) HT-FTIR spectroscopy of riebeckite. Period Miner ECMS 2015:167–168

    Google Scholar 

  • Tutti F, Dubrovinsky LS, Nygren M (2000) High-temperature study and thermal expansion of phlogopite. Phys Chem Miner 27:599–603

    Article  Google Scholar 

  • Uvarova YA, Sokolova E, Hawthorne FC, Agakhanov AA, Pautov LA (2008) The crystal structure of nalivkinite, a new lithium member of the astrophyllite group. Can Miner 46:651–659

    Article  Google Scholar 

  • Veith JA, Jackson ML (1974) Iron oxidation and reduction effects on structural hydroxyl and layer charge in aqueous suspensions of micaceous vermiculites. Clays Clay Miner 22:345–353

    Article  Google Scholar 

  • Ventruti G, Zema M, Scordari F, Pedrazzi G (2008) Thermal behavior of a Ti-rich phlogopite from Mt. Vulture (Potenza, Italy): An in situ X-ray single-crystal diffraction study. Am Miner 93:632–643

    Article  Google Scholar 

  • Weibye PC (1848) Beiträge zur topographischen Mineralogie Norwegens. Archiv für Mineralogie Geognosie Bergbau Hüttenkunde 22:465–544

    Google Scholar 

  • Woodrow PJ (1967) The crystal structure of astrophyllite. Acta Cryst 22:673–678

    Article  Google Scholar 

  • Yakovenchuk V, Ivanyuk G, Pakhomovsky Ya, Men’shikov Yu (2005) Khibiny. Laplandia Minerals, Apatity

  • Yefimov AF, Dusmatov VD, Ganzeyev AA, Katayeva ZT (1971) Cesium kupletskite, a new mineral. Dokl Akad Nauk SSSR 197:140–143 (in Russian)

    Google Scholar 

  • Zema M, Ventruti G, Lacalamita M, Scordari F (2010) Kinetics of Fe-oxidation/deprotonation process in Fe-rich phlogopite under isothermal conditions. Am Miner 95:1458–1466

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant 14-05-31229) and the President of Russian Federation Grant for Young Candidates of Sciences (Grant MK-3296.2015.5). The XRD studies were done at the X-ray Diffraction and Geomodel Centers of St. Petersburg State University. Mössbauer facilities, FCH and YAA were supported by an NSERC Discovery Grant and Canada Foundation for Innovation Grants to FCH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena S. Zhitova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhitova, E.S., Krivovichev, S.V., Hawthorne, F.C. et al. High-temperature behaviour of astrophyllite, K2NaFe7 2+Ti2(Si4O12)2O2(OH)4F: a combined X-ray diffraction and Mössbauer spectroscopic study. Phys Chem Minerals 44, 595–613 (2017). https://doi.org/10.1007/s00269-017-0886-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0886-1

Keywords

Navigation